Skip to main content

Anatomy of Quantum Chaotic Eigenstates

  • Chapter
  • First Online:
Chaos

Part of the book series: Progress in Mathematical Physics ((PMP,volume 66))

Abstract

We present one aspect of “Quantum Chaos”, namely the description of high frequency eigenmodes of a quantum system, the classical limit of which is chaotic (we call such eigenmodes “chaotic eigenmodes”). A paradigmatic example is provided by the eigenmodes of the Laplace–Beltrami operator on a compact Riemannian manifold of negative curvature: the corresponding classical dynamics is the geodesic flow on the manifold, which is strongly chaotic (Anosov). Other well-studied classes of examples include certain Euclidean domains (“chaotic billiards”), or quantized chaotic symplectomorphisms of the two-dimensional torus.

We propose several levels of description, some of them allowing for mathematical rigor, others being more heuristic.

The macroscopic distribution of the eigenstates makes use of semiclassical measures, which are probability measures invariant w.r.t. the classical dynamics; these measures reflect the asymptotic “shape” of a sequence of high frequency eigenmodes. The quantum ergodicity theorem states that the vast majority of the eigenstates is associated with the “flat” (Liouville) measure. A major open problem addresses the existence of “exceptional” eigenmodes admitting different macroscopic properties.

The microscopic description deals with the structure of the eigenfunctions at the scale of their wavelengths. It is mainly of statistical nature: it addresses, for instance, the value distribution of the eigenfunctions, their shortdistance correlation functions, the statistics of their nodal sets or domains. This microscopic description mostly relies on a random state (or random wave) Ansatz for the chaotic eigenmodes, which is far from being mathematically justified, but already offers interesting challenges for probabilists and harmonic analysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Anantharaman, Entropy and the localization of eigenfunctions, Ann. Math. 168 (2008), 435–475.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Anantharaman and S. Nonnenmacher, Entropy of Semiclassical Measures of the Walsh-Quantized Baker’s Map, Ann. Henri Poincaré 8 (2007), 37–74.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Anantharaman and S. Nonnenmacher, Half-delocalization of eigenfunctions of the laplacian on an Anosov manifold, Ann. Inst. Fourier 57 (2007), 2465–2523.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Anantharaman, H. Koch and S. Nonnenmacher, Entropy of eigenfunctions, in New Trends in Mathematical Physics, 1–22, V. Sidoravičius (ed.), Springer, Dordrecht, 2009.

    Google Scholar 

  5. D.V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967).

    Google Scholar 

  6. R. Aurich and F. Steiner, Statistical properties of highly excited quantum eigenstates of a strongly chaotic system, Physica D 64 (1993), 185–214.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Aurich and P. Stifter, On the rate of quantum ergodicity on hyperbolic surfaces and for billiards, Physica D 118 (1998), 84–102.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Aurich, A. Bäcker, R. Schubert and M. Taglieber, Maximum norms of chaotic quantum eigenstates and random waves, Physica D 129 (1999) 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Bäcker, R. Schubert and P. Stifter, On the number of bouncing ball modes in billiards, J. Phys. A 30 (1997), 6783–6795.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Bäcker, R. Schubert and P. Stifter, Rate of quantum ergodicity in Euclidean billiards, Phys. Rev. E 57 (1998) 5425–5447. Erratum: Phys. Rev. E 58 (1998), 5192.

    Article  MathSciNet  Google Scholar 

  11. A. Bäcker and R. Schubert, Autocorrelation function for eigenstates in chaotic and mixed systems, J. Phys. A 35 (2002), 539–564.

    Article  MathSciNet  MATH  Google Scholar 

  12. N.L. Balasz and A. Voros, Chaos on the pseudosphere, Phys. Rep. 143 (1986), 109– 240.

    Article  MathSciNet  Google Scholar 

  13. N.L. Balasz and A. Voros, The quantized baker’s transformation, Ann. Phys. (NY) 190 (1989), 1–31.

    Article  Google Scholar 

  14. P. Bàlint and I. Melbourne, Decay of correlations and invariance principles for dispersing billiards with cusps, and related planar billiard flows, J. Stat. Phys. 133 (2008), 435–447.

    Article  MathSciNet  MATH  Google Scholar 

  15. A.H. Barnett, Asymptotic rate of quantum ergodicity in chaotic Euclidean billiards, Comm. Pure Appl. Math. 59 (2006), 1457–1488.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Bérard, Volume des ensembles nodaux des fonctions propres du laplacien, Bony– Sjöstrand–Meyer seminar, 1984–1985, Exp. No. 14, Ecole Polytech., Palaiseau, 1985.

    Google Scholar 

  17. G. Berkolaiko, J.P. Keating and U. Smilansky, Quantum ergodicity for graphs related to interval maps, Commun. Math. Phys. 273 (2007), 137–159.

    Article  MathSciNet  MATH  Google Scholar 

  18. M.V. Berry, Regular and irregular semiclassical wave functions, J. Phys. A, 10 (1977), 2083–91.

    Article  MathSciNet  MATH  Google Scholar 

  19. M.V. Berry, Quantum Scars of Classical Closed Orbits in Phase Space, Proc. R. Soc. Lond. A 423 (1989), 219–231.

    Article  Google Scholar 

  20. M.V. Berry, Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature, J. Phys. A 35 (2002), 3025–3038.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Bleher, B. Shiffman and S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142 (2000), 351–395.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Blum, S. Gnutzmann and U. Smilansky, Nodal Domains Statistics: a criterium for quantum chaos, Phys. Rev. Lett. 88 (2002), 114101.

    Article  Google Scholar 

  23. E.B. Bogomolny, Smoothed wave functions of chaotic quantum systems, Physica D 31 (1988), 169–189.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Bogomolny, O. Bohigas and P. Leboeuf, Quantum chaotic dynamics and random polynomials, J. Stat. Phys. 85 (1996), 639–679.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Bogomolny and C. Schmit, Percolation model for nodal domains of chaotic wave functions, Phys. Rev. Lett. 88 (2002), 114102.

    Article  Google Scholar 

  26. E. Bogomolny and C. Schmit, Random wave functions and percolation, J. Phys. A 40 (2007), 14033–14043.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Bourgain and E. Lindenstrauss, Entropy of quantum limits, Comm. Math. Phys. 233 (2003), 153–171; corrigendum available at http://www.math.princeton.edu/ elonl/Publications/.

  28. A. Bouzouina et S. De Bièvre, Equipartition of the eigenfunctions of quantized ergodic maps on the torus, Commun. Math. Phys. 178 (1996), 83–105.

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Brooks, On the entropy of quantum limits for 2-dimensional cat maps, Commun. Math. Phys. 293 (2010), 231–255.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Brooks and E. Lindenstrauss, Non-localization of eigenfunctions on large regular graphs, preprint arXiv:0912.3239.

    Google Scholar 

  31. J. Brüning, Über Knoten von Eigenfunktionen des Laplace–Beltrami-Operators, Math. Z. 158 (1978), 15–21.

    Article  MathSciNet  MATH  Google Scholar 

  32. L.A. Bunimovich, On the ergodic properties of nowhere dispersing billiards, Commun. Math. Phys. 65 (1979), 295–312.

    Article  MathSciNet  MATH  Google Scholar 

  33. C.-H. Chang, T. Krüger, R. Schubert and S. Troubetzkoy, Quantisations of Piecewise Parabolic Maps on the Torus and their Quantum Limits, Commun. Math. Phys. 282 (2008), 395–418.

    Article  MATH  Google Scholar 

  34. N. Chernov, A stretched exponential bound on time correlations for billiard flows, J. Stat. Phys. 127 (2007) 21–50

    Article  MathSciNet  MATH  Google Scholar 

  35. Y. Colin de Verdière, Ergodicité et fonctions propres du Laplacien, Commun. Math. Phys. 102 (1985), 597–502.

    Google Scholar 

  36. R. Courant and D. Hilbert, Methoden der mathematischen Physik, Vol. I, Springer, Berlin, 1931.

    Google Scholar 

  37. B. Crespi, G. Perez and S.-J. Chang, Quantum Poincaré sections for twodimensional billiards, Phys. Rev. E 47 (1993), 986–991.

    Article  MathSciNet  Google Scholar 

  38. M. Degli Esposti, S. Graffi and S. Isola, Classical limit of the quantized hyperbolic toral automorphisms, Comm. Math. Phys. 167 (1995), 471–507.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Degli Esposti, S. Nonnenmacher and B. Winn, Quantum variance and ergodicity for the baker’s map, Commun. Math. Phys. 263 (2006), 325–352.

    Article  MathSciNet  MATH  Google Scholar 

  40. H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93 (1988), 161–183.

    Article  MathSciNet  MATH  Google Scholar 

  41. B. Ekhardt et al., Approach to ergodicity in quantum wave functions, Phys. Rev. E 52 (1995), 5893–5903.

    Article  Google Scholar 

  42. F. Faure, S. Nonnenmacher and S. De Bi`evre, Scarred eigenstates for quantum cat maps of minimal periods, Commun. Math. Phys. 239, 449–492 (2003).

    Google Scholar 

  43. F. Faure and S. Nonnenmacher, On the maximal scarring for quantum cat map eigenstates, Commun. Math. Phys. 245 (2004), 201–214.

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Feingold and A. Peres, Distribution of matrix elements of chaotic systems, Phys. Rev. A 34 (1986), 591–595.

    Article  MathSciNet  Google Scholar 

  45. P. Gérard et G. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J. 71 (1993), 559–607.

    Article  MathSciNet  MATH  Google Scholar 

  46. B. Gutkin, Entropic bounds on semiclassical measures for quantized one-dimensional maps, Commun. Math. Phys. 294 (2010), 303–342.

    Article  MathSciNet  MATH  Google Scholar 

  47. J.H. Hannay, Chaotic analytic zero points: exact statistics for those of a random spin state, J. Phys. A 29 (1996), L101–L105.

    Article  MathSciNet  MATH  Google Scholar 

  48. J.H. Hannay and M.V. Berry, Quantization of linear maps – Fresnel diffraction by a periodic grating, Physica D 1 (1980), 267–290.

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Hassell, Ergodic billiards that are not quantum unique ergodic, with an appendix by A. Hassell and L. Hillairet. Ann. of Math. 171 (2010), 605–618.

    MathSciNet  MATH  Google Scholar 

  50. B. Helffer, A. Martinez and D. Robert, Ergodicité et limite semi-classique, Commun. Math. Phys. 109 (1987), 313–326.

    Article  MathSciNet  MATH  Google Scholar 

  51. E.J. Heller, Bound-state eigenfunctions of classically chaotic hamiltonian systems: scars of periodic orbits, Phys. Rev. Lett. 53 (1984), 1515–1518.

    Article  MathSciNet  Google Scholar 

  52. E.J. Heller and P. O’Connor, Quantum localization for a strongly classically chaotic system, Phys. Rev. Lett. 61 (1988), 2288–2291.

    Article  MathSciNet  Google Scholar 

  53. L. Hörmander, The spectral function for an elliptic operator, ActaMath. 127 (1968), 193–218.

    Article  Google Scholar 

  54. H. Iwaniec and P. Sarnak, L norms of eigenfunctions of arithmetic surfaces, Ann. of Math. 141 (1995), 301–320.

    Article  MathSciNet  MATH  Google Scholar 

  55. L. Kaplan and E.J. Heller, Linear and nonlinear theory of eigenfunction scars, Ann. Phys. (NY) 264 (1998), 171–206.

    Article  MathSciNet  MATH  Google Scholar 

  56. L. Kaplan, Scars in quantum chaotic wavefunctions, Nonlinearity 12 (1999), R1– R40.

    Article  MATH  Google Scholar 

  57. A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge Univ. Press, Cambridge, 1995.

    Google Scholar 

  58. J.P. Keating, F. Mezzadri, and A.G. Monastra, Nodal domain distributions for quantum maps, J. Phys. A 36 (2003), L53–L59.

    Article  MathSciNet  MATH  Google Scholar 

  59. J.P. Keating, J. Marklof and I.G. Williams, Nodal domain statistics for quantum maps, percolation, and stochastic Loewner evolution, Phys. Rev. Lett. 97 (2006), 034101.

    Article  Google Scholar 

  60. D. Kelmer, Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus, Ann. of Math. 171 (2010), 815–879.

    Article  MathSciNet  MATH  Google Scholar 

  61. P. Kurlberg and Z. Rudnick, Hecke theory and equidistribution for the quantization of linear maps of the torus, Duke Math. J. 103 (2000), 47–77.

    Article  MathSciNet  MATH  Google Scholar 

  62. P. Kurlberg and Z. Rudnick On quantum ergodicity for linear maps of the torus Commun. Math. Phys. 222 (2001), 201–227.

    Google Scholar 

  63. P. Kurlberg and Z. Rudnick, Value distribution for eigenfunctions of desymmetrized quantum maps, Int. Math. Res. Not. 18 (2001), 985–1002.

    Article  MathSciNet  Google Scholar 

  64. P. Kurlberg and Z. Rudnick, On the distribution of matrix elements for the quantum cat map, Ann. of Math. 161 (2005), 489–507.

    Article  MathSciNet  MATH  Google Scholar 

  65. V.F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions (Addendum by A. Shnirelman), Springer, 1993.

    Google Scholar 

  66. P. Leboeuf and P. Shukla, Universal fluctuations of zeros of chaotic wavefunctions, J. Phys. A 29 (1996), 4827–4835.

    Article  MathSciNet  MATH  Google Scholar 

  67. P. Leboeuf and A. Voros, Chaos-revealing multiplicative representation of quantum eigenstates, J. Phys. A 23 (1990), 1765–1774.

    Article  MathSciNet  Google Scholar 

  68. A.J. Lichtenberg and M.A. Lieberman, Regular and chaotic dynamics, 2d edition, Springer, 1992.

    Google Scholar 

  69. E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Annals of Math. 163 (2006), 165–219.

    Article  MathSciNet  MATH  Google Scholar 

  70. W. Luo and P. Sarnak, Quantum variance for Hecke eigenforms, Ann. Sci. ENS. 37 (2004), 769–799.

    MathSciNet  MATH  Google Scholar 

  71. S.W. McDonald and A.N. Kaufmann, Wave chaos in the stadium: statistical properties of short-wave solutions of the Helmholtz equation Phys. Rev. A 37 (1988), 3067–3086.

    Article  Google Scholar 

  72. J. Marklof and S. O’Keefe, Weyl’s law and quantum ergodicity for maps with divided phase space; appendix by S. Zelditch Converse quantum ergodicity, Nonlinearity 18 (2005), 277–304.

    MathSciNet  MATH  Google Scholar 

  73. I. Melbourne, Decay of correlations for slowly mixing flows, Proc. London Math. Soc. 98 (2009), 163–190.

    Article  MathSciNet  MATH  Google Scholar 

  74. D. Milićević, Large values of eigenfunctions on arithmetic hyperbolic surfaces, to appear in Duke Math. J.

    Google Scholar 

  75. D. Milićević, Large values of eigenfunctions on arithmetic hyperbolic 3-manifolds, preprint.

    Google Scholar 

  76. F. Nazarov and M. Sodin, On the number of nodal domains of random spherical harmonics, Amer. J. Math. 131 (2009), 1337–1357.

    Article  MathSciNet  MATH  Google Scholar 

  77. F. Nazarov and M. Sodin, Random Complex Zeroes and Random Nodal Lines, preprint, arXiv:1003.4237.

    Google Scholar 

  78. S. Nonnenmacher, Entropy of chaotic eigenstates, CRM Proceedings and Lecture Notes 52 (2010), arXiv:1004.4964.

    Google Scholar 

  79. S. Nonnenmacher and A. Voros, Chaotic eigenfunctions in phase space, J. Stat. Phys. 92 (1998), 431–518.

    Article  MathSciNet  MATH  Google Scholar 

  80. I.C. Percival, Regular and irregular spectra, J. Phys. B 6 (1973), L229–232.

    Article  Google Scholar 

  81. Å. Pleijel, Remarks on Courant’s nodal line theorem, Comm. Pure Appl. Math. 8 (1956), 553–550.

    MathSciNet  Google Scholar 

  82. G. Rivière, Entropy of semiclassical measures in dimension 2, Duke Math. J. (in press), arXiv:0809.0230.

    Google Scholar 

  83. G. Rivière, Entropy of semiclassical measures for nonpositively curved surfaces, preprint, arXiv:0911.1840.

    Google Scholar 

  84. Z. Rudnick and P. Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Commun. Math. Phys. 161 (1994), 195–213.

    Article  MathSciNet  MATH  Google Scholar 

  85. Z. Rudnick and I. Wigman, On the volume of nodal sets for eigenfunctions of the Laplacian on the torus, Ann. H. Poincaré 9 (2008), 109–130.

    Article  MathSciNet  MATH  Google Scholar 

  86. M. Saraceno Classical structures in the quantized baker transformation, Ann. Phys. (NY) 199 (1990), 37–60.

    Google Scholar 

  87. A. Schnirelman, Ergodic properties of eigenfunctions, Uspekhi Mat. Nauk 29 (1974), 181–182.

    Google Scholar 

  88. R. Schubert, Upper bounds on the rate of quantum ergodicity, Ann. H. Poincaré 7 (2006), 1085–1098.

    Article  MathSciNet  MATH  Google Scholar 

  89. R. Schubert, On the rate of quantum ergodicity for quantised maps, Ann. H. Poincaré 9 (2008), 1455–1477.

    Article  MathSciNet  MATH  Google Scholar 

  90. B. Shiffman and S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Commun. Math. Phys. 200 (1999), 661–683.

    Article  MathSciNet  MATH  Google Scholar 

  91. Ja.G. Sinai, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Uspehi Mat. Nauk 25 (1970) no. 2 (152), 141–192.

    Google Scholar 

  92. J.A. Toth and I. Wigman, Title: Counting open nodal lines of random waves on planar domains, preprint arXiv:0810.1276.

    Google Scholar 

  93. J.-M. Tualle and A. Voros, Normal modes of billiards portrayed in the stellar (or nodal) representation, Chaos, Solitons and Fractals 5 (1995), 1085–1102.

    Article  MathSciNet  MATH  Google Scholar 

  94. E. Vergini and M. Saraceno, Calculation by scaling of highly excited states of billiards, Phys. Rev. E 52 (1995), 2204–2207.

    Article  Google Scholar 

  95. A. Voros, Asymptotic-expansions of stationary quantum states, Ann. Inst. H. Poincaré A 26 (1977), 343–403.

    MathSciNet  Google Scholar 

  96. I. Wigman, Fluctuations of the nodal length of random spherical harmonics, preprint 0907.1648.

    Google Scholar 

  97. S. Zelditch, Uniform distribution of the eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), 919–941.

    Article  MathSciNet  MATH  Google Scholar 

  98. S. Zelditch, Quantum ergodicity of C* dynamical systems, Commun. Math. Phys. 177 (1996), 507–528.

    Article  MathSciNet  MATH  Google Scholar 

  99. S. Zelditch, Index and dynamics of quantized contact transformations, Ann. Inst. Fourier, 47 (1997), 305–363.

    Article  MathSciNet  MATH  Google Scholar 

  100. S. Zelditch, Complex zeros of real ergodic eigenfunctions, Invent. Math. 167 (2007), 419–443.

    Article  MathSciNet  MATH  Google Scholar 

  101. S. Zelditch, Real and complex zeros of Riemannian random waves, Proceedings of the conference Spectral analysis in geometry and number theory, Contemp. Math. 484 321–342, AMS, Providence, 2009.

    Google Scholar 

  102. S. Zelditch et M. Zworski, Ergodicity of eigenfunctions for ergodic billiards, Commun. Math. Phys. 175 (1996), 673–682.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Nonnenmacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Nonnenmacher, S. (2013). Anatomy of Quantum Chaotic Eigenstates. In: Duplantier, B., Nonnenmacher, S., Rivasseau, V. (eds) Chaos. Progress in Mathematical Physics, vol 66. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0697-8_6

Download citation

Publish with us

Policies and ethics