Skip to main content

Adhesion on Protein (and Other Rough Biomolecular) Surfaces

  • Chapter
  • First Online:
Fractal Symmetry of Protein Exterior

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

  • 567 Accesses

Abstract

Surface roughness can have significant effect on the adhesion forces. The mechanical theory of adhesion talks about the effect of surface roughness on adhesion. This topic is of paramount importance to mechanobiology and to a spectrum of applicative studies where adhesions to proteins are studied. More roughness of protein surface signifies more probability of van der Waal contacts between the surface patch of protein and that of the interacting molecule. A rough binding surface may indicate potentially stronger interactions between protein and the adhesive agent. Thus, an accurate characterization of surface roughness becomes essential for applicative research of diverse types of adhesion studies. In this chapter we talk about a generalized description of fractal surfaces and their role in adhesion. Influence of surface roughness on van der Waals dispersion forces is briefly touched. But then again, this is a huge topic with illustrious history; a comprehensive account of it, therefore, is out of the scope of the present chapter. For introductory ideas, however, this chapter may be of some help. Most, if not all, of the ideas discussed in the present chapter has never been tried in the paradigm of protein surfaces, to the best of my knowledge. But this is the way ahead, because application of these ideas in proteins will be immensely beneficial for a wide range of potential applications that demand an accurate description of protein surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrait N, Rubio G, Vieira S (1995) Plastic deformation in nanometer scale contacts. Langmuir 18:4505–4509

    Google Scholar 

  • Albelda SM, Buck CA (1990) Integrins and other cell adhesion molecules. FASEB J 4(11):2868–2880

    PubMed  CAS  Google Scholar 

  • Aramaki H, Cheng HS, Chung YW (1993) The contact between roughness surfaces with longitudinal texture: I. Average contact pressure and real contact area. J. Tribology, Trans. ASME 115:419–424

    Google Scholar 

  • Archard JF (1957) Elastic deformation and the laws of friction. Proc Royal Soc London A 243:190–205

    Article  Google Scholar 

  • Ausloos M, Berman DH (1985) A multivariate Weierstrass-Mandelbrot function. Proc Royal Soc London A 400:331–350

    Article  Google Scholar 

  • Barabasi AL, Stanley HE (1995) Fractal concepts in surface growth. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Berry MV, Lewis ZV (1980) On the weierstrass-mandelbrot function. Proc Roy Soc London Ser A 370:459–484

    Article  Google Scholar 

  • Bissell MJ, Nelson WJ (1999) Cell-to-cell contact and extracellular matrix. Integration of form and function: the central role of adhesion molecules. Curr Opin Cell Biol 11(537–539):1999

    Google Scholar 

  • Blackmore D, Zhou JG (1998) Fractal analysis of height distributions of anisotropic rough surfaces. Fractals 6:43–58

    Article  Google Scholar 

  • Borodich FM, Mosolov AB (1992) Fractal roughness in contact problem. J Appl Math Mech 56:681–690

    Article  Google Scholar 

  • Borri-Brunetto M, Carpinteri A, Chiaia B (1998) Lacunarity of the contact domain between elastic bodies with rough boundaries. In: Frantziskonis G (ed) Probamat-21st century: probabilities and materials. Kluwer, Dordrecht, pp 45–64

    Chapter  Google Scholar 

  • Bradley RS (1932) The cohesive force between solid surfaces and the surface energy of solids. Phil Mag 13:853–862

    CAS  Google Scholar 

  • Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12(463–518):1996

    Google Scholar 

  • Bush AW, Gibson RD, Thomas TR (1975) The elastic contact of rough surfaces. Wear 35:87–111

    Article  Google Scholar 

  • Bush AW, Gibson RD, Keogh GP (1979) Strongly anisotropic rough surfaces. ASME J Lubr Tech 101:15–20

    Article  Google Scholar 

  • Buzio R, Malyska K, Rymuza Z, Boragno C, Biscarini F, De Mongeot FB, Valbusa U (2004) Experimental investigation of the contact mechanics of rough fractal surfaces. IEEE Trans Nanobiosci 3(1):27–31

    Article  CAS  Google Scholar 

  • Chang WR, Etsion I, Bogy DB (1987) An elastic–plastic model for the contact of rough surfaces. J Tribol 110:50–56

    Article  Google Scholar 

  • Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428

    Article  PubMed  CAS  Google Scholar 

  • Chen CS, Tan J, Tien J (2004) Mechanotransduction at cell-matrix and cell–cell contacts. Annu Rev Biomed Eng 6:275–302

    Article  PubMed  CAS  Google Scholar 

  • Chen YL, Helm CA, Israelachvili JN (1991) Molecular mechanisms associated with adhesion and contact-angle hysteresis of monolayer surfaces. J Phys Chem 95:10736–10747

    Article  CAS  Google Scholar 

  • Ciavarella M, Demelio G, Barber JR, Jang YH (2000) Linear elastic contact of the Weierstrass profile. Proc R Soc London A 456:387–405

    Article  Google Scholar 

  • Ciavarella M, Demelio G (2001) Elastic multiscale contact of rough surfaces: archard’s model revisited and comparisons with modern fractal models. J Appl Mech-Trans ASME 68:496–498

    Google Scholar 

  • Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268:233–239

    Article  PubMed  CAS  Google Scholar 

  • Creton C, Brown HR, Shull KR (1994) Molecular weight effects in chain pullout. Macromolecules 27:3174–3183

    Article  CAS  Google Scholar 

  • Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294(1708–1712):2001

    Google Scholar 

  • Derjaguin BV (1934) Molekulartheorie der €außeren Reibung. Z Phys 88:661–675

    Article  Google Scholar 

  • Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53:314–326

    Article  CAS  Google Scholar 

  • Eisenriegler E (1993) Polymers near surfaces: conformation properties and relation to critical phenomena. World Scientific, Singapore

    Google Scholar 

  • Folch A, Toner M (2000) Microengineering of cellular interactions. Annu Rev Biomed Eng 2:227–256

    Article  PubMed  CAS  Google Scholar 

  • Francis HA (1977) Application of spherical indentation mechanics to reversible and irreversible contact between rough surfaces. Wear 45:221–269

    Article  Google Scholar 

  • Ganti S, Bhushan G (1995) Generalized fractal analysis and its applications to engineering surfaces. Wear 180:17–34

    Article  Google Scholar 

  • Gent AN, Lai SM (1995) Interfacial bonding, energy dissipation and strength. Rubber Chem Technol 68:13

    Article  CAS  Google Scholar 

  • Gladwell GML (1980) Contact problems in the classical theory of elasticity. Sijtoff and Noordhoff, USA

    Google Scholar 

  • Greenwood JA (1984) A unified theory of surface roughness. Proc Royal Soc London A, 393:3133–3157

    Google Scholar 

  • Greenwood JA, Williamson JBP (1966) Contact of nominally flat surface. Proc Roy Soc London Ser A295, 300–319

    Google Scholar 

  • Gupta PK, Cook NH (1972) Statistical analysis of mechanical interaction of rough surfaces. ASME J Lubr Tech 94:19–26

    Article  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis ofmechanotransduction in living cells. Physiol Rev 81:685–740

    PubMed  CAS  Google Scholar 

  • He L, Zhu J (1997) The fractal character of processed metal surfaces. Wear 208:17–24

    Article  CAS  Google Scholar 

  • Hertz H (1882) Uber die beruhrung fester elastischer korper. J. Reine Angew Math 92:156–171

    Google Scholar 

  • Hills DA, Nowell D, Sackfield A (1993) Mechanics of elastic contact. Butterworth-Heinemann Ltd, Oxford

    Google Scholar 

  • Hisakado T (1974) Effect of surface roughness on contact between solid surfaces. Wear 28:217–234

    Article  Google Scholar 

  • Hughes-Fulford M (2004) Signal transduction and mechanical stress. Sci STKE (249):RE12

    Google Scholar 

  • Hynes RO, Lander AD (1992) Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68:303–322

    Article  PubMed  CAS  Google Scholar 

  • Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20(7):811–827

    Google Scholar 

  • Israelachvili JN (2001) In fundamentals of tribology bridging the gap between the macro-, micro- and nanoscales, NATO advanced science institute series. In: Bhushan B (ed) Kluwer Academic Publishers, Dordrecht, pp 631–650

    Google Scholar 

  • Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Academic Press, London

    Google Scholar 

  • Janmey PA, Weitz DA (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 29(7):364–370

    Article  PubMed  CAS  Google Scholar 

  • Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc Royal Soc London A 324:301–313

    Article  CAS  Google Scholar 

  • Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Johnson KL (1998) Mechanics of adhesion. Tribol Int 31:413–418

    Article  Google Scholar 

  • Ju Y, Zheng L (1985) A full numerical solution for the elastic contact of three-dimensional real rough surfaces. Johnson KLW (ed) Contact Mechanics, Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Katsumi A, Orr AW, Tzima E, Schwartz MA (2004) Integrins in mechanotransduction. J Biol Chem 279(13):12001–12004

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi N, Oden JT (1985) Contact problems in elasticity. SIAM, Philadelphia

    Google Scholar 

  • Koizumi S, Hasegawa H, Hashimoto T (1994a) Ordered structure of block polymer/homopolymer mixtures. 5. Interplay of macro- and microphase transitions. Macromolecules 27:6532–6540

    Article  CAS  Google Scholar 

  • Koizumi S, Hasegawa H, Hashimoto T (1994b) Spatial distribution of homopolymers in block copolymer microdomains as observed by a combined SANS and SAXS method. Macromolecules 27:7893–7906

    Article  CAS  Google Scholar 

  • Landman U, Luedtke WD, Ringer EM (1992) Molecular dynamics simulations of adhesive contact formation and friction. In: Singer IL, Pollock HM (ed), Fundamentals of friction NATA ASI, Series E, vol 220, Kluwer

    Google Scholar 

  • Larson J, Biwa S, Storakers B (1999) Inelastic flattening of rough surfaces. Mech Mat 31:29–41

    Article  Google Scholar 

  • Lewis GN, Randall M (1961) Thermodynamics, 2nd ed. revised by Pitzer KS, Brewer L (ed) McGraw-Hill, New York, p 472

    Google Scholar 

  • Ling FF (1989) The possible role of fractal geometry in tribology. Tribol Trans 32:497–505

    Article  CAS  Google Scholar 

  • Lukashev ME, Werb Z (1998) ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol 8(11):437–441

    Article  PubMed  CAS  Google Scholar 

  • Majumdar A, Bhushan B (1990) Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J Tribol 112(2):205–216

    Article  Google Scholar 

  • Majumdar A, Tien CT (1990) Fractal characterization and simulation of rough surfaces. Wear 136:313–327

    Article  Google Scholar 

  • Majumdar A, Bhushan B (1991) Fractal model elastic–plastic contact between rough surfaces. J Tribol 113:1–11

    Article  Google Scholar 

  • Mandelbrot BB, Passoja DE, Paullay AJ (1984) Fractal character of fracture surfaces of metals. Nature 308:721–722

    Article  CAS  Google Scholar 

  • McCool JI, Gassel SS (1981) The contact of two surfaces having anisotropic roughness geometry. ASLE Spec Publ SP 7:29–38

    Google Scholar 

  • McCool JI (1986) Comparison of models for the contact of rough surfaces. Wear 107:37–60

    Article  Google Scholar 

  • McCool J (1983) Limits of applicability of elastic contact models of rough surfaces. Wear 86:105–118

    Article  Google Scholar 

  • Nayak RP (1971) Random process model of rough surfaces. ASME J Lubrication Tech 93:398–407

    Article  Google Scholar 

  • Onions RA, Archard JF (1973) The contact of surfaces having a random structure. J Phys D Appl Phys 6:289–304

    Article  Google Scholar 

  • Othmani A, Kaminsky C (1997) Three dimensional fractal analysis of sheet metal surface. Wear 214:147–150

    Article  Google Scholar 

  • O’Callaghan M, Cameron MA (1976) Static contact under load between nominally flat surfaces in which deformation is purely elastic. Wear 36:79–97

    Article  Google Scholar 

  • Packham DE (2003) Surface energy, surface topography and adhesion. J Adhes Adhes 23(6):437–448

    Article  CAS  Google Scholar 

  • Physics of sliding friction (1996) Persson BNJ, Tosatti E (eds) Kluwer Academic: Dordrecht

    Google Scholar 

  • Persson BNJ (2001) Elastoplastic contact between randomly rough surfaces. Phys Rev Lett 87(11):116101–116104

    Article  PubMed  CAS  Google Scholar 

  • Pietronero L, Tosatti E (eds) (1996) Fractals in Physics. North Holland, Amsterdam

    Google Scholar 

  • Powierza ZH, Klimczak T, Polijaniuk A (1992) On the experimental verification of the Greenwood–Williamson model for the contact of rough surfaces. Wear 154:115–124

    Article  Google Scholar 

  • Pullen J, Williamson JBP (1972) On the plastic contact of rough surfaces, Pro Roy Soc, London Ser A327, 157–173

    Google Scholar 

  • Rabinowicz E (1995) Friction and wear of materials. Wiley, USA

    Google Scholar 

  • Ren N, Lee SIC (1994) The effect of surface roughness and topography on the contact behavior of elastics bodies. J Tribol 116:804–811

    Article  Google Scholar 

  • Sahoo P, Roy Chowdhury SK (1996) A fractal analysis of adhesion at the contact between rough solids. J Eng Tribol: Proc Instn Mech Eng 210:269–279

    Article  Google Scholar 

  • Sahoo P, Roy Chowdhury SK (2002) A fractal analysis of adhesive wear at the contact between rough solids. Wear 253:924–934

    Article  CAS  Google Scholar 

  • Sawada Y, Sheetz MP (2002) Force transduction by Triton cytoskeletons. J Cell Biol 156:609–615

    Article  PubMed  CAS  Google Scholar 

  • Sayles RS, Thomas TR (1978) Surface topography as nonstationary random process. Nature (London) 271(2):431–434

    Article  Google Scholar 

  • Sayles RS, Thomas TR (1976) Thermal conductance of a rough elastic contact. Appl Energy 2:249–267

    Article  Google Scholar 

  • Seiki M (2002) The cell surface: the stage for matrix metalloproteinase regulation of migration. Curr Opin Cell Biol 14(5):624–632

    Article  PubMed  CAS  Google Scholar 

  • Shyy JY, Chien S (1997) Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol 9:707–713

    Article  PubMed  CAS  Google Scholar 

  • Singer IL, Pollack HM (1992) Fundamentals of friction: macroscopic and microscopic processes. Kluwer, Dordrecht

    Book  Google Scholar 

  • Singhvi R, Kumar A, Lopez G, Stephanopoulos GN, Wang DIC, Whitesides GM (1994) Engineering cell shape and function. Science 264:696–698

    Article  PubMed  CAS  Google Scholar 

  • Somorjai GA (1972) Principles of surface chemistry. Prentice-Hall, London

    Google Scholar 

  • Tabor D (1975) In: Surface Physics of Materials. Blakely JM (ed) vol 2, Chapter 10. Academic Press, New York

    Google Scholar 

  • Tabor D (1976) Surface forces and surface interactions. J Colloid Interface Sc. 58:2–13

    Article  Google Scholar 

  • Tallian TE (1972) The theory of partial elastohydrodynamic contact. Wear 21:49–101

    Article  Google Scholar 

  • Tao Q, Lee HP, Lim SP (2001) Contact mechanics of surfaces with various models of roughness descriptions. Wear 249:539–545

    Article  CAS  Google Scholar 

  • Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors ofmetalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839

    Article  PubMed  CAS  Google Scholar 

  • Wake WC (1982) Adhesion and the formulation of adhesives, 2nd edn. Applied Science, London

    Google Scholar 

  • Wang S, Komvopoulos K (1994) A fractal theory of the interfacial temperature distribution in the slow sliding regime. Part I. Elastic contact and heat transfer analysis. J Tribol 116:812–823

    Article  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127

    Article  PubMed  CAS  Google Scholar 

  • Warren TL, Krajcinovic D (1996) Random cantor set models for the elastic-perfectly plastic contact of rough surface. Wear 196:1–15

    Article  CAS  Google Scholar 

  • Webster MN, Sayles RS (1986) A numerical for the elastic frictionless contact of real rough surface. J Tribol 108:314–320

    Article  Google Scholar 

  • Whitehouse DJ, Archard JF (1970) The properties of random surfaces of significance in their contact. Proc Royal Soc London Ser A 316:97–121

    Article  Google Scholar 

  • Wool RP, Long JM (1993) Fractal structure of polymer interfaces. Macromolecules 26:5227–5239

    Article  CAS  Google Scholar 

  • Wool RP (1995) Polymer interfaces: structure and strength. Hanser, Munich

    Google Scholar 

  • Wu JJ (2000) Characterization of fractal surfaces. Wear 239:36–47

    Article  CAS  Google Scholar 

  • Yan W, Komvopoulos K (1998) Contact analysis of elastic-plastic fractal surfaces. J Appl Phys 84(7):3617–3624

    Article  CAS  Google Scholar 

  • Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114:3583–3590

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Banerji .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Banerji, A. (2013). Adhesion on Protein (and Other Rough Biomolecular) Surfaces. In: Fractal Symmetry of Protein Exterior. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Basel. https://doi.org/10.1007/978-3-0348-0654-1_3

Download citation

Publish with us

Policies and ethics