Skip to main content

Crystal Frameworks, Matrix-valued Functions and Rigidity Operators

Part of the Operator Theory: Advances and Applications book series (OT,volume 236)

Abstract

An introduction and survey is given of some recent work on the infinitesimal dynamics of crystal frameworks, that is, of translationally periodic discrete bond-node structures in ℝd, for d = 2,3,... We discuss the rigidity matrix, a fundamental object from finite bar-joint framework theory, rigidity operators, matrix-function representations and low energy phonons. These phonons in material crystals, such as quartz and zeolites, are known as rigid unit modes, or RUMs, and are associated with the relative motions of rigid units, such as SiO4 tetrahedra in the tetrahedral polyhedral bondnode model for quartz. We also introduce semi-infinite crystal frameworks, bi-crystal frameworks and associated multi-variable Toeplitz operators.

Keywords

  • Crystal framework
  • rigidity operator
  • matrix function
  • rigid unit mode

Mathematics Subject Classification (2010). Primary 52C75; Secondary 46T20.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Asimow and B. Roth, The rigidity of graphs, Trans. Amer. Math. Soc., 245 (1978), 279–289.

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. L. Asimow and B. Roth, Rigidity of graphs II, J. Math. Anal. Appl. 68 (1979) 171– 190.

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Ch. Baerlocher and L.B. McCusker, Database of Zeolite Structures: http://www.izastructure. org/databases/

    Google Scholar 

  4. C.S. Borcea and I. Streinu, Periodic frameworks and flexibility, Proc. R. Soc. A 2010 466, 2633–2649.

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. R.Connelly, P.W. Fowler, S.D. Guest, B. Schulze, W.J. Whiteley, “When is a pinjointed framework isostatic?” International J. of Solids and Structures, 46 (2009), 762–773.

    CrossRef  MATH  Google Scholar 

  6. H.S.M. Coxeter, Regular polytopes, Dover, New York, 1973. [7] M.T. Dove, Introduction to lattice dynamics, Cambridge topics in Mineral Physics and Chemistry, C.U.P., 1993.

    Google Scholar 

  7. M.T. Dove, A.K.A. Pryde, V. Heine and K.D. Hammonds. Exotic distributions of rigid unit modes in the reciprocal spaces of framework aluminosilicates, J. Phys., Condens. Matter 19 (2007) doi:10.1088/0953-8984/19/27/275209.

    Google Scholar 

  8. M.D. Foster and M.M.J. Treacy, A database of hypothetical zeolite structures: http://www.hypotheticalzeolites.net

    Google Scholar 

  9. A.P. Giddy, M.T. Dove, G.S. Pawley, V. Heine, The determination of rigid unit modes as potential soft modes for displacive phase transitions in framework crystal structures. Acta Crystallogr., A49 (1993), 697–703.

    CrossRef  Google Scholar 

  10. J. Graver, B. Servatius and H. Servatius, Combinatorial rigidity, Graduate Texts in Mathematics, vol 2, Amer. Math. Soc., 1993.

    Google Scholar 

  11. K.D. Hammonds, H. Deng, V. Heine, and M.T. Dove, How floppy modes give rise to adsorption sites in zeolites, PRL 78 (1997), 3701–3704.

    CrossRef  Google Scholar 

  12. K.D. Hammonds, V. Heine, and M.T. Dove, Rigid-Unit Modes and the quantitative determination of the flexibility possessed by zeolite frameworks, J. Phys. Chem. 102 (1998), 1759–1767.

    Google Scholar 

  13. P.W. Fowler and S.D. Guest, A symmetry extension of Maxwell’s rule for rigidity of frames, International Journal of Solids and Structures 37 (2000), 1793–1804.

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. S.D. Guest and J.W. Hutchinson, On the determinacy of repetitive structures, Journal of the Mechanics and Physics of Solids, 51 (2003), 383–391.

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. R.G. Hutchinson and N.A. Fleck, The structural performance of the periodic truss, Journal of the Mechanics and Physics of Solids, 54 (2006) 756–782.

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. V. Kapko, C. Dawson, M.M.J. Treacy and M.F. Thorpe, Flexibility of ideal zeolite frameworks, Physical Chemistry Chemical Physics, DOI: 10.1039/c003977b.

    Google Scholar 

  17. A.B. Kempe, On a general method of describing plane curves of the ntℎ degree by linkwork, Proc. London Math. Soc. 7 (1876), 213–216.

    MathSciNet  MATH  Google Scholar 

  18. G. Laman, On graphs and the rigidity of plane skeletal structures, J. Engineering Mathematics, 4 (1970), 331–340.

    CrossRef  MathSciNet  MATH  Google Scholar 

  19. J. Malestein and L. Theran, Generic combinatorial rigidity of periodic frameworks, Advances in Mathematics, 233(1), 291–331, 2013.

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. J.C. Owen and S.C. Power, Infinite bar-joint frameworks, Proceedings of the Symposium in Applied Computing, (SAC 2009) March 8–12, 2009, Honolulu, Hawaii, USA.

    Google Scholar 

  21. J.C. Owen and S.C. Power, Frameworks, symmetry and rigidity, Inter. J. Computational Geometry and Applications, 20, (2010), 723–750.

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. J.C. Owen and S.C. Power, Continuous curves from infinite Kempe linkages, Bull. London Math. Soc., 41 (2009) 1105–1111.

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. J.C. Owen and S.C. Power, Infinite bar-joint frameworks, crystals and operator theory, New York J. Math., 17 (2011) 445–490.

    MathSciNet  MATH  Google Scholar 

  24. S.C. Power, Polynomials for crystal frameworks and the rigid unit mode spectrum, Phil. Trans. of Roy. Soc. A, 2013, to appear.

    Google Scholar 

  25. S.C. Power, Crystal frameworks, symmetry and affinely periodic flexes, arXiv: 1103.1914, 2011.

    Google Scholar 

  26. E. Ross, B. Shulze and W. Whiteley, Finite motions from periodic frameworks with added symmetry, Intern. J. of Solids and Structures, 42 (2011), 1711–1728.

    CrossRef  Google Scholar 

  27. B. Schulze, Symmetric versions of Laman’s Theorem, Discrete & Computational Geometry, 44 (2010), 946–972.

    CrossRef  MathSciNet  MATH  Google Scholar 

  28. B. Schulze, Block-diagonalised rigidity matrices of symmetric frameworks and applications, Contributions to Algebra and Geometry 51 (2010), 427–466.

    MathSciNet  MATH  Google Scholar 

  29. A.P. Sutton and R.W. Balluffi, Interfaces in crystalline materials, Monographs on the physics and chemistry of materials 51, Oxford University Press, 1995.

    Google Scholar 

  30. I.P. Swainson and M.T. Dove, Low-frequency floppy modes in β-cristobalite, Phys. Rev. Letters, 71 (1993), 193–196.

    CrossRef  Google Scholar 

  31. W. Whiteley, The union of matroids and the rigidity of frameworks, Siam J. Discrete Math. Vol. 1 (1988), 237–255.

    CrossRef  MathSciNet  MATH  Google Scholar 

  32. F. Wegner, Rigid-unit modes in tetrahedral crystals, Journal of Physics: Condensed Matter, Volume 19, Issue 40 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Power .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Basel

About this paper

Cite this paper

Power, S.C. (2014). Crystal Frameworks, Matrix-valued Functions and Rigidity Operators. In: Cepedello Boiso, M., Hedenmalm, H., Kaashoek, M., Montes Rodríguez, A., Treil, S. (eds) Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation. Operator Theory: Advances and Applications, vol 236. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0648-0_26

Download citation