Skip to main content

Computing the Hilbert Transform in Wavelet Bases on Adaptive Grids

  • Conference paper
  • First Online:
Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 236))

  • 1331 Accesses

Abstract

We propose an algorithm for the efficient numerical computation of the periodic Hilbert transform. The function to be transformed is represented in a basis of spline wavelets in Sobolev spaces. The underlying grids have a hierarchical structure which is locally refined during computation according to the behavior of the involved functions. Under appropriate assumptions, we prove that the algorithm can deliver a result with prescribed accuracy. Several test examples illustrate how the method works in practice.

Mathematics Subject Classification (2010). 65T60, 65R10, 44A15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Bittner. Fast algorithms for periodic spline wavelets on sparse grids. SIAM J. Sci. Comput., 20(4):1192–1213, 1999

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Börm and W. Hackbusch. Hierarchical quadrature for singular integrals. Computing, 74(2):75–100, 2005

    Article  MathSciNet  MATH  Google Scholar 

  3. C.K. Chui. An introduction to wavelets. Wavelet Analysis and Its Applications. 1. Boston, MA: Academic Press, 1992

    Google Scholar 

  4. A. Cohen, I. Daubechies, and J.-C. Feauveau. Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math., 45(5):485–560, 1992

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Dahmen and A. Kunoth. Multilevel preconditioning. Numer. Math., 63(3):315– 344, 1992

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Dahmen, S. Prössdorf, and R. Schneider. Wavelet approximation methods for pseudodifferential equations. II: Matrix compression and fast solution. Adv. Comput. Math., 1(3-4):259–335, 1993

    Article  MATH  Google Scholar 

  7. W. Dahmen, S. Prössdorf, and R. Schneider. Wavelet approximation methods for pseudodifferential equations. I: Stability and convergence. Math. Z., 215(4):583–620, 1994

    MATH  Google Scholar 

  8. I. Daubechies. Ten lectures on wavelets. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992

    Book  MATH  Google Scholar 

  9. A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput., 14(6):1368–1393, 1993

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. II. Appl. Comput. Harmon. Anal., 2(1):85–100, 1995

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Gaier. Konstruktive Methoden der konformen Abbildung. Berlin – Göttingen – Heidelberg: Springer-Verlag, 1964

    Book  MATH  Google Scholar 

  12. M. Golomb. Approximation by periodic spline interpolants on uniform meshes. J. Approximation Theory, 1:26–65, 1968

    Article  MathSciNet  MATH  Google Scholar 

  13. M.H. Gutknecht. Fast algorithms for the conjugate periodic function. Computing, 22:79–91, 1979

    Article  MathSciNet  MATH  Google Scholar 

  14. S.L. Hahn. Hilbert transforms in signal processing. The Artech House Signal Processing Library. Boston, MA: Artech House, 1996

    Google Scholar 

  15. P. Henrici. Applied and computational complex analysis. Volume III: Discrete Fourier analysis, Cauchy integrals, construction of conformal maps, univalent functions. Reprint. Wiley Classics Library. New York, NY: Wiley, 1993

    Google Scholar 

  16. F.W. King. Hilbert transforms. Volume 1. Encyclopedia of Mathematics and its Applications 124. Cambridge: Cambridge University Press, 2009

    Google Scholar 

  17. S. Kunis and D. Potts. Time and memory requirements of the nonequispaced FFT. Sampl. Theory Signal Image Process., 7(1):77–100, 2008

    MathSciNet  MATH  Google Scholar 

  18. A.K. Louis, P. Maaß and A. Rieder. Wavelets. Theorie und Anwendungen. Teubner Studienb¨ucher: Mathematik. Stuttgart: Teubner, 1994

    Google Scholar 

  19. F. Martin. Analytische und numerische Verfahren zur Berechnung der Hilbert Transformation und zur Lösung funktionentheoretischer Randwertaufgaben. Ph.D. thesis, TU Bergakademie Freiberg, 2010

    Google Scholar 

  20. F. Martin and E.Wegert. Computing the Hilbert transform using biorthogonal spline wavelets, J. Math. Sci., 189(1):150–163, 2013.

    Article  MATH  Google Scholar 

  21. S. Prössdorf and B. Silbermann. Numerical analysis for integral and related operator equations. Berlin: Akademie-Verlag, 1991

    Google Scholar 

  22. A. Rathsfeld. On the stability of piecewise linear wavelet collocation and the solution of the double layer equation over polygonal curves. In: Golberg, Michael (ed.), Boundary integral methods: numerical and mathematical aspects. Southampton: WIT Press/ Computational Mechanics Publications. Comput Eng. 1, 177–215, 1999

    Google Scholar 

  23. E. Wegert. An iterative method for solving nonlinear Riemann–Hilbert problems. J. Comput. Appl. Math., 29(3):311–327, 1990

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Wegert. Nonlinear boundary value problems for holomorphic functions and singular integral equations. Mathematical Research. 65. Berlin: Akademie Verlag, 1992

    Google Scholar 

  25. R. Wegmann. Ein Iterationsverfahren zur konformen Abbildung. Numer. Math., 30:453–466, 1978

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Wegmann. Methods for numerical conformal mapping. In: KĂĽhnau, R. (ed.),

    Google Scholar 

  27. Handbook of complex analysis: geometric function theory. Volume 2. Amsterdam: Elsevier/North–Holland. 351–477, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this paper

Cite this paper

Martin, F., Wegert, E. (2014). Computing the Hilbert Transform in Wavelet Bases on Adaptive Grids. In: Cepedello Boiso, M., Hedenmalm, H., Kaashoek, M., Montes Rodríguez, A., Treil, S. (eds) Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation. Operator Theory: Advances and Applications, vol 236. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0648-0_21

Download citation

Publish with us

Policies and ethics