Unduloid-like Equilibrium Shapes of Carbon Nanotubes Subjected to Hydrostatic Pressure

  • Ivaïlo M. MladenovEmail author
  • Mariana Ts. Hadzhilazova
  • Vassil M. Vassilev
  • Peter A. Djondjorov
Conference paper
Part of the Trends in Mathematics book series (TM)


The aim of this work is to obtain numerically unduloid-like equilibrium shapes of carbon nanotubes subjected to external pressure.


Carbon nanotubes equilibrium shapes unduloid-like shapes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354 (1991), 56–58.CrossRefGoogle Scholar
  2. [2]
    L. Radushkevich, V. Lukyanovich, About carbon structures formed during thermal decomposition of carbon oxides at iron surface (in Russian). Soviet Journal of Physical Chemistry XXVI (1952), 88–95.Google Scholar
  3. [3]
    A. Oberlin, M. Endo, T. Koyama, High-resolution electron-microscope observations of graphitized carbon-fibers. Carbon 14 (1976), 133–135.CrossRefGoogle Scholar
  4. [4]
    D. Bethune, C. Kiang, M. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363 (1993), 605–607.CrossRefGoogle Scholar
  5. [5]
    T. Ebbesen, P. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358 (1992), 220–222.CrossRefGoogle Scholar
  6. [6]
    S. Iijima, Ch. Brabec, A. Maiti, J. Bernholc, Structural flexibility of carbon nanotubes. J. Chem. Phys. 104 (1996), 2089–2090.CrossRefGoogle Scholar
  7. [7]
    J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37 (1988), 6991–7000.CrossRefGoogle Scholar
  8. [8]
    D. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42 (1990), 9458–9471.CrossRefGoogle Scholar
  9. [9]
    T. Lenosky, H. Gonze, M. Teter, V. Elser, Energetics of negatively curved graphitic carbon. Nature 355 (1992), 333–335.CrossRefGoogle Scholar
  10. [10]
    B. Yakobson, C. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76 (1996), 2511–2514.CrossRefGoogle Scholar
  11. [11]
    P. Naghdi, Foundations of elastic shell theory, Progress in Solid Mechanics, vol. 4 (I.N. Sneddon and R. Hill, eds.), North-Holland, Amsterdam, 1963, pp. 1–90.Google Scholar
  12. [12]
    P. Naghdi, The theory of shells and plates, Handbuch der Physik, vol. VI a-2, Springer, New York, 1972, pp. 425–640.Google Scholar
  13. [13]
    F. Niordson, Shell Theory, North-Holland, New York, 1985.Google Scholar
  14. [14]
    Z.-C. Tu, Z.-C. Ou-Yang, Elastic theory of low-dimensional continua and its applications in bio- and nano-structures. J. Comput. Theoret. Nanoscience 5 (2008), 422–448.Google Scholar
  15. [15]
    S.S. Xie, W.Z. Li, L.X. Qian, B.H. Chang, C.S. Fu, R.A. Zhao, W.Y. Zhou, G. Wang, Equilibrium shape equation and possible shapes of carbon nanotubes. Phys. Rev. B 54 (1996), 16436–16439.CrossRefGoogle Scholar
  16. [16]
    Z.-C. Ou-Yang, W. Helfrich, Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39 (1989), 5280–5288.CrossRefGoogle Scholar
  17. [17]
    V. Vassilev, P. Djondjorov, I. Mladenov, Cylindrical equilibrium shapes of fluid membranes. J. Phys. A: Math. & Theor. 41 (2008), 435201 (16pp).Google Scholar
  18. [18]
    V. Vassilev, P. Djondjorov, I. Mladenov, Application of continuum mechanics approach to the shape analysis of carbon nanotubes and their junctions. In: Nanoscience & Nanotechnology IX (Eds. E. Balabanova and J. Dragieva), BPS Ltd., Sofia, 2009, pp. 11–16.Google Scholar
  19. [19]
    P. Djondjorov, V. Vassilev, I. Mladenov, Analytic description and explicit parametrisation of the equilibrium shapes of elastic rings and tubes under uniform hydrostatic pressure. Int. J. Mech. Sci. 53 (2011), 355–364.CrossRefGoogle Scholar
  20. [20]
    J. Smotlacha, Numerical solutions of some models in quantum mechanics, PhD Thesis, Czech Technical University 2012.Google Scholar
  21. [21]
    F. Jülicher, U. Seifert, Shape equations for axisymmetric vesicles: A clarification. Phys. Rev. E 49 (1994), 4728–4731.CrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Ivaïlo M. Mladenov
    • 1
    Email author
  • Mariana Ts. Hadzhilazova
    • 1
  • Vassil M. Vassilev
    • 2
  • Peter A. Djondjorov
    • 2
  1. 1.Institute of BiophysicsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of MechanicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations