Skip to main content

A Globalized Newton Method for the Optimal Control of Fermionic Systems

  • Chapter
  • First Online:
Control and Optimization with PDE Constraints

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 164))

  • 1664 Accesses

Abstract

A computational framework for determining optimal control fields for inducing energy state transitions in systems of several fermions in an infinite potential quantum well is presented. The full multiparticle system is numerically approximated using linear combinations of Slater determinants constructed from nodal trial functions, which leads to diagonalized matrix approximations of variable coefficient terms. First and second order optimality conditions are given for the control and a robust line search is described for computing a local minimizer.

This work was supported by the Austrian Science Fund (FWF) under grant SFB F32 (SFB “Mathematical Optimization and Applications in Biomedical Sciences”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Borzì, G. Stadler, U. Hohenester, Optimal quantum control in nanostructures: theory and application to a generic three-level system. Phys. Rev. A 66, 053811 (2002)

    Article  Google Scholar 

  2. U. Boscain, G. Charlot, J.-P. Gauthier, S. Guerin, H.-R. Jauslin, Optimal control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys. 43(5), 2107–2132 (2002)

    Article  MathSciNet  Google Scholar 

  3. C.G. Canuto, M. Yousuff Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods (Springer, Heidelberg, 2007)

    Book  Google Scholar 

  4. C. Clason, G. von Winckel, A general spectral method for the numerical simulation of one-dimensional interacting fermions. Comput. Phys. Commun. 183(2), 405–417 (2012)

    Article  Google Scholar 

  5. M. Grace, C. Brif, H. Rabitz, I.A. Walmsley, R.L. Kosut, D.A. Lidar, Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles. J. Phys. B, At. Mol. Opt. Phys. 40(9), S103 (2007)

    Article  Google Scholar 

  6. J. Grond, G. von Winckel, J. Schmiedmayer, U. Hohenester, Optimal control of number squeezing in trapped Bose–Einstein condensates. Phys. Rev. A 80, 053625 (2009)

    Article  Google Scholar 

  7. K. Kime, Finite difference approximation of control via the potential in a 1-d Schrödinger equation. Electron. J. Differ. Equ. 2000(26), 1–10 (2000)

    MathSciNet  MATH  Google Scholar 

  8. K. Kreutz-Delgado, The complex gradient operator and the CR-calculus, 1–74 (2009). arXiv:0906.4835

  9. P.-O. Löwdin, Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97(6), 1474–1489 (1955)

    Article  MathSciNet  Google Scholar 

  10. Y. Maday, G. Turinici, New formulations of monotonically convergent quantum control algorithms. J. Chem. Phys. 118(18), 8191–8196 (2003)

    Article  Google Scholar 

  11. M. Mundt, D.J. Tannor, Optimal control of interacting particles: a multi-configuration time-dependent Hartree–Fock approach. New J. Phys. 11(10), 105038 (2009)

    Article  MathSciNet  Google Scholar 

  12. A.P. Peirce, M.A. Dahleh, H. Rabitz, Optimal control of quantum-mechanical systems: existence, numerical approximation, and applications. Phys. Rev. A 37, 4950–4964 (1988)

    Article  MathSciNet  Google Scholar 

  13. D. Sugny, C. Kontz, H.R. Jauslin, Time-optimal control of a two-level dissipative quantum system. Phys. Rev. A 76(2), 023419 (2007)

    Article  Google Scholar 

  14. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics (Springer, Secaucus, 2006)

    MATH  Google Scholar 

  15. G. von Winckel, A. Borzì, Computational techniques for a quantum control problem with H 1-cost. Inverse Probl. 24(3), 034007 (2008)

    Article  MathSciNet  Google Scholar 

  16. G. von Winckel, A. Borzì, Qucon: a fast Krylov–Newton code for dipole quantum control problems. Comput. Phys. Commun. 181(12), 2158–2163 (2010)

    Article  MathSciNet  Google Scholar 

  17. G. von Winckel, A. Borzì, S. Volkwein, A globalized Newton method for the accurate solution of a dipole quantum control problem. SIAM J. Sci. Comput. 31(6), 4176–4203 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory von Winckel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

von Winckel, G. (2013). A Globalized Newton Method for the Optimal Control of Fermionic Systems. In: Bredies, K., Clason, C., Kunisch, K., von Winckel, G. (eds) Control and Optimization with PDE Constraints. International Series of Numerical Mathematics, vol 164. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0631-2_10

Download citation

Publish with us

Policies and ethics