Advertisement

The Balian–Low Theorem for the Windowed Clifford–Fourier Transform

  • Yingxiong Fu
  • Uwe Kähler
  • Paula Cerejeiras
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

In this chapter, we provide the definition of the Clifford–Zak transform associated with the discrete version of the kernel of a windowed Clifford– Fourier transform. We proceed with deriving several important properties of such a transform. Finally, we establish the Balian–Low theorem for a Clifford frame under certain natural assumptions on the window function.

Keywords

Clifford–Zak transform Clifford frame Balian–Low theorem Clifford–Fourier transform windowed Clifford–Fourier transform. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Bahri. Generalized Fourier transform in Clifford algebra CL(0, 3). Far East Journal of Mathematical Science, 44(2):143–154, Sept. 2010.Google Scholar
  2. [2]
    M. Bahri. Generalized Fourier transform in real clifford algebra cL(0, n). Far East Journal of Mathematical Sciences, 48(1):11–24, Jan. 2011.MathSciNetMATHGoogle Scholar
  3. [3]
    M. Bahri, S. Adji, and J.M. Zhao. Real Clifford windowed Fourier transform. Acta Mathematica Sinica, 27(3):505–518, 2011.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    M. Bahri, E. Hitzer, R. Ashino, and R. Vaillancourt. Windowed Fourier transform of two-dimensional quaternionic signals. Applied Mathematics and Computation, 216(8):2366–2379, June 2010.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    R. Balan. Extensions of no-go theorems to many signal systems. In A. Aldroubi and E.B. Lin, editors, Wavelets, Multiwavelets, and Their Applications, volume 216 of Contemporary Mathematics, pages 3–14. American Mathematical Society, 1998.Google Scholar
  6. [6]
    I.J. Benedetto, W. Czaja, and A.Y. Maltsev. The Balian–Low theorem for the symplectic form on ℝ2d. Journal of Mathematical Physics, 44(4):1735–1750, 2003.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    J.J. Benedetto, C. Heil, and D.F. Walnut. Differentiation and the Balian–Low theorem. Journal of Fourier Analysis and Applications, 1(4):355–402, 1994.MathSciNetCrossRefGoogle Scholar
  8. [8]
    F. Brackx, N. De Schepper, and F. Sommen. The two-dimensional Clifford–Fourier transform. Journal of Mathematical Imaging and Vision, 26(1):5–18, 2006.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    F. Brackx, N. De Schepper, and F. Sommen. The Fourier transform in Clifford analysis. Advances in Imaging and Electron Physics, 156:55–201, 2009.CrossRefGoogle Scholar
  10. [10]
    F. Brackx, R. Delanghe, and F. Sommen. Clifford Analysis, volume 76. Pitman, Boston, 1982.Google Scholar
  11. [11]
    [1 1 ] T. Bülow, M. Felsberg, and G. Sommer. Non-commutative hypercomplex Fourier transforms of multidimensional signals. In G. Sommer, editor, Geometric computing with Clifford Algebras: Theoretical Foundations and Applications in Computer Vision and Robotics, pages 187–207, Berlin, 2001. Springer.Google Scholar
  12. [12]
    T. Bülow and G. Sommer. Quaternionic Gabor filters for local structure classification. In Proceedings Fourteenth International Conference on Pattern Recognition, volume 1, pages 808–810, 16–20 Aug 1998.Google Scholar
  13. [13]
    W. Czaja and A.M. Powell. Recent developments in the Balian–Low theorem. In C. Heil, editor, Harmonic Analysis and Applications, pages 79–100. Birkhäuser, Boston, 2006.Google Scholar
  14. [14]
    I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, 1992.Google Scholar
  15. [15]
    J. Ebling and G. Scheuermann. Clifford Fourier transform on vector fields. IEEE Transactions on Visualization and Computer Graphics, 11(4):469–479, JulyAug. 2005.Google Scholar
  16. [16]
    J. Ebling and J. Scheuermann. Clifford convolution and pattern matching on vector fields. In Proceedings IEEE Visualization, volume 3, pages 193–200, Los Alamitos, CA, 2003. IEEE Computer Society.Google Scholar
  17. [17]
    M. Felsberg. Low-Level Image Processing with the Structure Multivector. PhD thesis, Christian-Albrechts-Universität, Institut für Informatik und Praktische Mathematik, Kiel, 2002.Google Scholar
  18. [18]
    K. Gröchenig. Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, 2001.Google Scholar
  19. [19]
    K. Gröchenig, D. Han, and G. Kutyniok. The Balian–Low theorem for the symplectic lattice in higher dimensions. Applied and Computational Harmonic Analysis, 13:169– 176, 2002.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    C. Heil and D.F. Walnut. Continuous and discrete wavelet transforms. SIAM Review, 31:628–666, 1989.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    S. Held, M. Storath, P. Massopust, and B. Forster. Steerable wavelet frames based on the Riesz transform. IEEE Transactions on Image Processing, 19(3):653–667, 2010.MathSciNetCrossRefGoogle Scholar
  22. [22]
    E.M.S. Hitzer and B. Mawardi. Clifford Fourier transform on multivector fields and uncertainty principles for dimensions n = 2(mod 4) and n = 3(mod4). Advances in Applied Clifford Algebras, 18(3-4):715–736, 2008.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    B. Mawardi, E. Hitzer, and S. Adji. Two-dimensional Clifford windowed Fourier transform. In E. Bayro-Corrochano and G. Scheuermann, editors, Applied Geometric Algebras in Computer Science and Engineering, pages 93–106. Springer, London, 2010.Google Scholar
  24. [24]
    B. Mawardi and E.M.S. Hitzer. Clifford Fourier transformation and uncertainty principle for the Clifford algebra Cℓ 3,0. Advances in Applied Clifford Algebras, 16(1):41– 61, 2006.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    M. Porat, Y.Y. Zeevi, and M. Zibulski. Multi-window Gabor schemes in signal and image representations. In H.G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms, pages 381–408. Birkhäuser, 1998.Google Scholar
  26. [26]
    S.J. Sangwine and T.A. Ell. Hypercomplex Fourier transforms of color images. In IEEE International Conference on Image Processing (ICIP 2001), volume I, pages 137–140, Thessaloniki, Greece, 7–10 Oct. 2001. IEEE.Google Scholar
  27. [27]
    F. Sommen. Hypercomplex Fourier and Laplace transforms I. Illinois Journal of Mathematics, 26(2):332–352, 1982.MathSciNetMATHGoogle Scholar
  28. [28]
    Y.Y. Zeevi and M. Zibulski. Analysis of multiwindow Gabor-type schemes by frame methods. Applied and Computational Harmonic Analysis, 4:188–221, 1997.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Hubei Key Laboratory of Applied MathematicsHubei UniversityWuhanChina
  2. 2.Faculty of Mathematics and Computer ScienceHubei UniversityWuhanChina
  3. 3.Department of MathematicsUniversity of AveiroAveiroPortugal

Personalised recommendations