Analytic Video (2D + t) Signals Using Clifford–Fourier Transforms in Multiquaternion Grassmann–Hamilton–Clifford Algebras

  • P. R. Girard
  • R. Pujol
  • P. Clarysse
  • A. Marion
  • R. Goutte
  • P. Delachartre
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

We present an algebraic framework for (2D+ t) video analytic signals and a numerical implementation thereof using Clifford biquaternions and Clifford–Fourier transforms. Though the basic concepts of Clifford–Fourier transforms are well known, an implementation of analytic video sequences using multiquaternion algebras does not seem to have been realized so far. After a short presentation of multiquaternion Clifford algebras and Clifford–Fourier transforms, a brief pedagogical review of 1D and 2D quaternion analytic signals using right quaternion Fourier transforms is given. Then, the biquaternion algebraic framework is developed to express Clifford–Fourier transforms and (2D + t) video analytic signals in standard and polar form constituted by a scalar, a pseudoscalar and six phases. The phase extraction procedure is fully detailed. Finally, a numerical implementation using discrete fast Fourier transforms of an analytic multiquaternion video signal is provided.

Keywords

Multiquaternion Clifford algebras Clifford biquaternions Clifford–Fourier transforms 2D + t analytic video signals. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Brackx, N. De Schepper, and F. Sommen. The two-dimensional Clifford–Fourier transform. Journal of Mathematical Imaging and Vision, 26(1):5–18, 2006.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    T. Bülow. Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images. PhD thesis, University of Kiel, Germany, Institut für Informatik und Praktische Mathematik, Aug. 1999.Google Scholar
  3. [3]
    T. Bülow and G. Sommer. A novel approach to the 2D analytic signal. In F. Solina and A. Leonardis, editors, Computer Analysis of Images and Patterns, volume 1689 of Lecture Notes in Computer Science, pages 25–32. Springer, Berlin/Heidelberg, 1999.Google Scholar
  4. [4]
    W.K. Clifford. Applications of Grassmann’s extensive algebra. American Journal of Mathematics, 1(4):350–358, 1878.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    W.K. Clifford. Mathematical Papers. Chelsea Publishing Company, New York, 1968. First published 1882, edited by R. Tucker.Google Scholar
  6. [6]
    M.J. Crowe. A History of Vector analysis: The Evolution of the Idea of a Vectorial System. University of Notre Dame, Notre Dame, London, 1967.Google Scholar
  7. [7]
    P. Delachartre, P. Clarysse, R. Goutte, and P.R. Girard. Mise en oeuvre du signal analytique dans les algèbres de Clifford. In GRETSI, page 4, Bordeaux, France, 2011.Google Scholar
  8. [8]
    T.A. Ell. Hypercomplex Spectral Transformations. PhD thesis, University of Minnesota, June 1992.Google Scholar
  9. [9]
    D. Gabor. Theory of communication. Journal of the Institution of Electrical Engineers, 93(26):429–457, 1946. Part III.Google Scholar
  10. [10]
    P.R. Girard. Quaternions, Algèbre de Clifford et Physique Relativiste. PPUR, Lausanne, 2004.Google Scholar
  11. [11]
    P.R. Girard. Quaternions, Clifford Algebras and Relativistic Physics. Birkhäuser, Basel, 2007. Translation of [10].Google Scholar
  12. [12]
    P.R. Girard. Quaternion Grassmann-Hamilton-Clifford-algebras: new mathematical tools for classical and relativistic modeling. In O. Dössel and W.C. Schlegel, editors, World Congress on Medical Physics and Biomedical Engineering, September 712, 2009, volume 25/IV of IFMBE Proceedings, pages 65–68. Springer, 2010.Google Scholar
  13. [13]
    P.R. Girard. Multiquaternion Grassmann-Hamilton-Clifford algebras in physics and engineering: a short historical perspective. In K. Gürlebeck, editor, 9th International Conference on Clifford Algebras and their Applications, page 9. Weimar, Germany, 15–20 July 2011.Google Scholar
  14. [14]
    H. Grassmann. Die lineale Ausdehungslehre: ein neuer Zweig der Mathematik, dargestellt und durch Anwendungen auf die übrigen Zweige der Mathematik, wie auch die Statik, Mechanik, die Lehre von Magnetismus und der Krystallonomie erläutert. Wigand, Leipzig, second, 1878 edition, 1844.Google Scholar
  15. [15]
    H. Grassmann. Der Ort der Hamilton’schen Quaternionen in der Ausdehnungslehre. Mathematische Annalen, 12:375–386, 1877.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    H. Grassmann. Gesammelte mathematische und physikalische Werke. B.G. Teubner, Leipzig, 1894–1911. 3 volumes in 6 parts.Google Scholar
  17. [17]
    A. Gsponer and J.P. Hurni. Quaternions in mathematical physics (1): Alphabetical bibliography. Preprint, available at: http://www.arxiv.org/abs/arXiv:mathph/ 0510059, 2008. 1430 references.
  18. [18]
    A. Gsponer and J.P. Hurni. Quaternions in mathematical physics (2): Analytical bibliography. Preprint, available at: http://www.arxiv.org/abs/arXiv:mathphy/ 0511092, 2008. 1100 references.
  19. [19]
    K. Gürlebeck and W. Sprößig. Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, Aug. 1997.Google Scholar
  20. [20]
    S.L. Hahn. Multidimensional complex signals with single-orthant spectra. Proceedings of the IEEE, 80(8):1287–1300, Aug. 1992.CrossRefGoogle Scholar
  21. [21]
    S.L. Hahn and K.M. Snopek. The unified theory of 𝑛-dimensional complex and hypercomplex analytic signals. Bulletin of the Polish Academy of Sciences Technical Sciences, 59(2):167–181, 2011.CrossRefGoogle Scholar
  22. [22]
    H. Halberstam and R.E. Ingram, editors. The Mathematical Papers of Sir William Rowan Hamilton, volume III Algebra. Cambridge University Press, Cambridge, 1967.Google Scholar
  23. [23]
    W.R. Hamilton. Elements of Quaternions. Chelsea Publishing Company, New York, reprinted 1969 edition, 1969. 2 volumes (1899–1901).Google Scholar
  24. [24]
    T.L. Hankins. Sir William Rowan Hamilton. Johns Hopkins University Press, Baltimore, London, 1980.Google Scholar
  25. [25]
    J.P. Havlicek, J.W. Havlicek, and A.C. Bovik. The analytic image. In Proceedings 1997 International Conference on Image Processing (ICIP ′97), volume 2, pages 446–449, Washington, DC, USA, October 26–29 1997.Google Scholar
  26. [26]
    E. Hitzer. Quaternion Fourier transform on quaternion fields and generalizations. Advances in Applied Clifford Algebras, 17(3):497–517, May 2007.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    H.-J. Petsche. Grassmann. Birkhäuser, Basel, 2006.Google Scholar
  28. [28]
    S.J. Sangwine and T.A. Ell. The discrete Fourier transform of a colour image. In J.M. Blackledge and M.J. Turner, editors, Image Processing II Mathematical Methods, Algorithms and Applications, pages 430–441, Chichester, 2000. Horwood Publishing for Institute of Mathematics and its Applications. Proceedings Second IMA Conference on Image Processing, De Montfort University, Leicester, UK, September 1998.Google Scholar
  29. [29]
    G. Sommer, editor. Geometric computing with Clifford Algebras: Theoretical Foundations and Applications in Computer Vision and Robotics. Springer, Berlin, 2001.Google Scholar
  30. [30]
    J. Ville. Théorie et applications de la notion de signal analytique. Câbles et Transmission, 2A:61–74, 1948.Google Scholar
  31. [31]
    J. Vince. Geometric Algebra for Computer Graphics. Springer, London, 2008.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • P. R. Girard
    • 1
  • R. Pujol
    • 2
  • P. Clarysse
    • 1
  • A. Marion
    • 1
  • R. Goutte
    • 1
  • P. Delachartre
    • 1
  1. 1.CREATIS; CNRS UMR 5220 Inserm U1044; INSA-Lyon; Université Lyon 1, France Bât. Blaise PascalUniversité de LyonVilleurbanneFrance
  2. 2.Pôle de Mathématiques, INSA-Lyon Bât. Léonard de VinciUniversité de LyonVilleurbanneFrance

Personalised recommendations