Skip to main content

Concluding Remarks

  • Chapter
  • First Online:
Book cover Special Functions of Mathematical (Geo-)Physics

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 2283 Accesses

Abstract

In the first chapter we briefly introduce four fields showing strong geophysical background. Thereby, we are naturally led to differential equations which are closely related to solution systems of special functions. Since the Earth is a ball in first approximation, a spherical coordinate frame and spherical functions play a huge role in geomathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abeyratne, M.K., Freeden, W., Mayer, C.: Multiscale deformation analysis by Cauchy-Navier wavelets. J. Appl. Math. 2003(12), 605–645 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1972)

    MATH  Google Scholar 

  3. Anger, G., Gorenflo, R., Jochmann, H., Moritz, H., Webers, W.: Inverse Problems: Principles and Applications in Geophysics, Technology, and Medicine. Mathematical Research, vol. 74. Akademie Verlag, Berlin (1993)

    Google Scholar 

  4. Ansorge, R., Sonar, T.: Mathematical Models of Fluid Dynamics. Wiley-VCH, Weinheim (2009)

    Book  Google Scholar 

  5. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aronszajn, N., Creese, T.M., Lipkin, L.J.: Polyharmonic Functions. Clarendon, Oxford (1983)

    MATH  Google Scholar 

  7. Artin, E.: The Gamma Function. Holt, Rinehart and Winston, New York (1964)

    MATH  Google Scholar 

  8. Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Lecture Notes in Mathematics, vol. 2044. Springer, Heidelberg (2012)

    Google Scholar 

  9. Backus, G.E.: Converting vector and tensor equations to scalar equations in spherical coordinates. Geophys. J. R. Astron. Soc. 13, 61–101 (1967)

    Article  Google Scholar 

  10. Backus, G.E.: Poloidal and toroidal fields in geomagnetic field modelling. Rev. Geophys. 24, 75–109 (1986)

    Article  MathSciNet  Google Scholar 

  11. Backus, G.E., Parker, R., Constable, C.: Foundations of Geomagnetism. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  12. Ballani, L., Engels, J., Grafarend, E.W.: Global base functions for the mass density in the interior of a massive body (Earth). Manuscr. Geod. 18, 99–114 (1993)

    Google Scholar 

  13. Bayer, M., Freeden, W., Maier, T.: A vector wavelet approach in iono- and magnetospheric geomagnetic satellite data. J. Atmos. Sol. Terr. Phys. 63, 581–597 (2001)

    Article  Google Scholar 

  14. Bauch, H.: Approximationssätze für die Lösung der Grundgleichung der Elastostatik. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen (1981)

    Google Scholar 

  15. Beatson, R.K., Greengard, L.: A short course on fast multipole methods. In: Light, W., Ainsworth, M., Levesley, J., Marletta, M. (eds.) Wavelets, Multilevel Methods, and Elliptic PDEs, pp. 1–37. Oxford University Press, Oxford (1997)

    Google Scholar 

  16. Benedetto, J.J.: Frame decompositions, sampling, and uncertainty principle inequalities. In: Benedetto, J.J., Frazier, M.W. (eds.) Wavelets: Mathematics and Applications, pp. 247–304. CRC, Boca Raton (1994)

    Google Scholar 

  17. Benedetto, J.J.: Harmonic Analysis and Applications. CRC, Boca Raton (1996)

    MATH  Google Scholar 

  18. Benedetto, J.J., Zayed, A.I. (eds.): Sampling, Wavelets, and Tomography. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  19. Berman, C.L., Greengard, L.: A renormalization method for the evaluation of lattice sums. J. Math. Phys. 35(11), 6036–6048 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bessel, F.W.: Untersuchung des Theils der planetarischen Störungen, welcher aus der Bewegung der Sonne entsteht. Berliner Abh, pp. 1–52 (1824)

    Google Scholar 

  21. Biedenharn, L.C., Louck, J.D.: Angular Momentum in Quantum Physics (Theory and Application). Encyclopedia of Mathematics and Its Applications. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  22. Blakely, R.J.: Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  23. Blatt, J., Weisskopf, V.: Theoretical Nuclear Physics. Wiley, New York (1952)

    MATH  Google Scholar 

  24. Borwein, D., Borwein, J.M., Shail, R.: Analysis of certain lattice sums. J. Math. Anal. Appl. 143, 126–137 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Brackx, F., Delanghe, R.: On harmonic potential fields and the structure of monogenic functions. J. Anal. Appl. 22, 261–273 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Research Notes in Mathematics, vol. 76. Pitman, Boston (1982)

    Google Scholar 

  27. Braun, M.: Laguerre polynomials and the vibrations of a multiple pendulum. SIAM OP-SF Newsl. 7(3), 17–20 (1997)

    Google Scholar 

  28. Brink, D.M., Satchler, G.R.: Angular Momentum. Oxford Library of the Physical Sciences. Clarendon, Oxford (1968)

    Google Scholar 

  29. Butzer, P.L., Nessel, R.: Fourier Analysis and Approximation Theory. Birkhäuser, Basel (1971)

    Book  MATH  Google Scholar 

  30. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer, Berlin/Heidelberg/ New York (1968)

    Google Scholar 

  31. Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155, 468–498 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cherrie, J.B., Beatson, R.K., Newsam, G.N.: Fast evaluation of radial basis functions: methods for generalised multiquadrics in \({\mathbb{R}}^{n}\). SIAM J. Sci. Comput. 23(5), 1549–1571 (2002)

    Google Scholar 

  33. Choi, C.H., Ivanic, J., Gordon, M.S., Ruedenberg, K.: Rapid and staple determination of rotation matrices between spherical harmonics by direct recursion. J. Chem. Phys. 111(19), 8825–8831 (1999)

    Article  Google Scholar 

  34. Ciarlet, P.G.: Mathematical Elasticity: Volume I: Three-Dimensional Elasticity. Studies in Mathematics and Its Applications. North-Holland, Amsterdam (1994)

    Google Scholar 

  35. Clenshaw, C.W.: A note on the summation of Chebyshev series. Math. Table Wash. 9, 118–120 (1955)

    MathSciNet  MATH  Google Scholar 

  36. Clifford, W.K.: Applications of Grassmann’s extensive algebra. Am. J. Math. 1, 350–358 (1878)

    Article  MathSciNet  Google Scholar 

  37. Cohen, L.: Time Frequency Analysis: Theory and Applications. Prentice Hall, Englewood Cliffs (1995)

    Google Scholar 

  38. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, vol. 93, 2nd edn. Springer, Berlin/Heidelberg/New York (1998)

    Google Scholar 

  39. Cooley, J.W., Tukey, O.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  40. Courant, R., Hilbert, D.: Methoden der Mathematischen Physik I, II, 2nd edn. Springer, Berlin (1968)

    Google Scholar 

  41. Cui, J., Freeden, W.: Equidistribution on the sphere. SIAM J. Sci. Stat. Comput. 18(2), 595–609 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Davis, P.J.: Interpolation and Approximation. Blaisdell Publishing Company, Waltham (1963)

    MATH  Google Scholar 

  43. Davis, P.J., Rabinowitz, P.: Numerical Integration. Blaisdell, Toronto/London (1967)

    MATH  Google Scholar 

  44. De Bie, H., Sommen, F.: Spherical harmonics and integration in superspace. J. Phys. A 40(26), 7193–7212 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. De Bie, H., Eelbode, D., Sommen, F.: Spherical harmonics and integration in superspace: II. J. Phys. A 42(24), 245204 (2009)

    Article  MathSciNet  Google Scholar 

  46. Delanghe, R.: On regular-analytic functions with values in a Clifford algebra. Math. Ann. 185, 91–111 (1970)

    Article  MathSciNet  Google Scholar 

  47. Delanghe, R.: Clifford analysis: history and perspective. Comput. Method Funct. Theory 1, 107–153 (2001)

    MathSciNet  MATH  Google Scholar 

  48. Deuflhard, P.: On algorithms for the summation of certain special functions. Computing 17, 37–48 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  49. Deuflhard, P., Hohmann, A.: Numerische Mathematik. de Gruyter, Berlin/New York (1991)

    Google Scholar 

  50. Dressler, A.: Über die ungleichförmige Verteilung von Gitterpunkten in ebenen Bereichen. Math. Nachr. 52, 1–20 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  51. Dufour, H.M.: Fonctions Orthogonales dans la Sphère—Résolution Théoretique du Problème du Potentiel Terrestre. B. Geod. 51, 227–237 (1977)

    Article  Google Scholar 

  52. Edmonds, A.R.: Drehimpulse in der Quantenmechanik. Bibliographisches Institut, Mannheim (1964)

    Google Scholar 

  53. Engl, H.W., Louis, A.K., Rundell, W. (eds.): Inverse Problems in Geophysical Applications. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  54. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  55. Epstein, P.S.: Zur Theorie allgemeiner Zetafunktionen I. Math. Ann. 56, 615–644 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  56. Epstein, P.S.: Zur Theorie allgemeiner Zetafunktionen II. Math. Ann. 63, 205–216 (1907)

    Article  MATH  Google Scholar 

  57. Epton, M.A., Dembart, B.: Multipole translation theory for the three-dimensional Laplace and Helmholtz equations. SIAM J. Sci. Comput. 16(4), 865–897 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  58. Erdös, P., Gruber, M., Hammer, J.: Lattice Points. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 39. Longman Scientific-Technical/Wiley, New York (1989)

    Google Scholar 

  59. Euler, L.: Methodus universalis serierum convergentium summas quam proxime inveniendi. Commentarii Academiae Scientiarum Petropolitanae 8, 3–9, Opera Omnia (XIV), 101–107 (1736a)

    Google Scholar 

  60. Euler, L.: Methodus universalis series summandi ulterius promota. Commentarii Academiae Scientarium Petropolitanae 8, 147–158; Opera Omnia (XIV): 124–137 (1736b)

    Google Scholar 

  61. Evans, M., Hastings, N., Peacock, B.: Statistical Distributions, 3rd edn. Wiley, New York (2000)

    MATH  Google Scholar 

  62. Ewald, P.P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 64, 253–287 (1921)

    Article  MATH  Google Scholar 

  63. Fengler, M.J.: Vector spherical harmonic and vector wavelet based non-linear Galerkin schemes for solving the incompressible Navier–Stokes equation on the sphere. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen, 2005

    Google Scholar 

  64. Fengler, M.J., Freeden, W.: A non-linear Galerkin scheme involving vector and tensor spherical Harmonics for solving the incompressible Navier–Stokes equation on the sphere. SIAM J. Sci. Comput. 27, 967–994 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  65. Fengler, M.J., Freeden, W., Gutting M.: Darstellung des Gravitationsfelds und seiner Funktionale mit Multiskalentechniken. Zeitschrift für Geodäsie, Geoinformation und Landmanagement (ZfV) 129(5), 323–334 (2004)

    Google Scholar 

  66. Fengler, M.J., Freeden, W., Gutting, M.: The spherical Bernstein wavelet. Int. J. Pure Appl. Math. 31(2), 209–230 (2006)

    MathSciNet  MATH  Google Scholar 

  67. Freeden, W.: Über eine Klasse von Integralformeln der Mathematischen Geodäsie. Veröffentlichung des Geodätischen Instituts der Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen, vol. 27. Aachen (1979)

    Google Scholar 

  68. Freeden, W.: On integral formulas of the (unit) sphere and their application to numerical computation of integrals. Computing 25, 131–146 (1980a)

    Article  MathSciNet  MATH  Google Scholar 

  69. Freeden, W.: Über die Gaußsche Methode zur angenäherten Berechnung von Integralen. Math. Method Appl. Sci. 2, 397–409 (1980b)

    Article  MathSciNet  MATH  Google Scholar 

  70. Freeden, W.: On spherical spline interpolation and approximation. Math. Method Appl. Sci. 3, 551–575 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  71. Freeden, W.: Multidimensional Euler summation formulas and numerical cubature. Int. Ser. Num. Monogr. 57, 77–88 (1982)

    Google Scholar 

  72. Freeden, W.: Spherical spline interpolation: basic theory and computational aspects. J. Comput. Appl. Math. 11, 367–375 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  73. Freeden, W.: Interpolation by multidimensional periodic splines. J. Approx. Theory 55, 104–117 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  74. Freeden, W.: Some applications of approximation theory to the first boundary value problem of elastostatics. Int. Ser. Num. Monogr. 94, 121–129 (1990)

    MathSciNet  Google Scholar 

  75. Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B.G. Teubner, Leipzig (1999)

    MATH  Google Scholar 

  76. Freeden, W.: Metaharmonic Lattice Point Theory. Chapman & Hall/CRC, Boca Raton (2011)

    MATH  Google Scholar 

  77. Freeden, W., Fleck, J.: Numerical integration by means of adapted Euler summation formulas. Numer. Math. 51, 37–64 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  78. Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. Chapman & Hall/CRC, Boca Raton (2012)

    Google Scholar 

  79. Freeden, W., Gutting, M.: On the completeness and closure of vector and tensor spherical harmonics. Integral Transform. Spec. Funct. 19, 713–734 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  80. Freeden, W., Hermann, P.: Uniform approximation by spherical spline interpolation. Math. Z. 193, 265–275 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  81. Freeden, W., Hesse, K.: On the multiscale solution of satellite problems by use of locally supported kernel functions corresponding to equidistributed data on spherical orbits. Stud. Sci. Math. Hung. 39, 37–74 (2002)

    MathSciNet  MATH  Google Scholar 

  82. Freeden, W., Michel, V.: Multiscale Potential Theory (with Applications to Geoscience). Birkhäuser, Boston/Basel/Berlin (2004)

    Book  MATH  Google Scholar 

  83. Freeden, W., Michel, V.: Wavelet deformation analysis for spherical bodies. Int. J. Wavelet Multi. 3, 523–558 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  84. Freeden, W., Nutz, H.: Satellite gravity gradiometry as tensorial inverse problem. Int. J. Geomath. 2, 177–218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  85. Freeden, W., Reuter, R.: A class of multidimensional periodic splines. Manuscr. Math. 35, 371–386 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  86. Freeden, W., Reuter, R.: Remainder terms in numerical integration formulas of the sphere. Int. Ser. Num. Monogr. 61, 151–170 (1982)

    MathSciNet  Google Scholar 

  87. Freeden, W., Reuter, R.: Exact computation of spherical harmonics. Computing 32, 365–378 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  88. Freeden, W., Reuter, R.: An efficient algorithm for the generation of homogeneous harmonic polynomials. In: Cox, M.G., Mason, J.C. (eds.) Scientific Software Systems, pp. 166–180. Chapman & Hall, London (1990)

    Chapter  Google Scholar 

  89. Freeden, W., Schreiner, M.: Multiresolution analysis by spherical up functions. Constr. Approx. 23, 241–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  90. Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences, A Scalar, Vectorial, and Tensorial Setup. Springer, Berlin/Heidelberg (2009)

    MATH  Google Scholar 

  91. Freeden, W., Gervens, T., Mason, J.C.: A minimum norm interpolation method for determining the displacement field of a homogeneous isotropic elastic body from discrete data. IMA J. Appl. Math. 44, 55–76 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  92. Freeden, W., Schreiner, M., Franke, R.: A survey on spherical spline approximation. Surv. Math. Ind. 7, 29–85 (1997)

    MathSciNet  MATH  Google Scholar 

  93. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere (with Applications to Geomathematics). Oxford Science Publications/Clarendon, Oxford (1998)

    MATH  Google Scholar 

  94. Freeden, W., Nashed, M.Z., Sonar, T. (eds.): Handbook of Geomathematics, vol. 1 + 2. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  95. Freund, R.W., Hoppe, R.H.W.: Stoer/Bulirsch: Numerische Mathematik 1, 10th edn. Springer, Berlin/Heidelberg (2007)

    MATH  Google Scholar 

  96. Fricker, F.: Geschichte des Kreisproblems. Mitt. Math. Sem. Giessen 111, 1–34 (1975)

    MathSciNet  Google Scholar 

  97. Fricker, F.: Einführung in die Gitterpunktlehre. Birkhäuser, Basel (1982)

    Book  MATH  Google Scholar 

  98. Funk, H.: Beiträge zur Theorie der Kugelfunktionen. Math. Ann. 77, 136–152 (1916)

    Article  MathSciNet  Google Scholar 

  99. Gauß, C.F.: Disquisitiones Arithmetica. Leipzig (1801)

    Google Scholar 

  100. Gauß, C.F.: De nexu inter multitudinem classicum, in quas formae binariae secondi grauds distribuuntur, earumque determinantem. Werke 2, 269–291 (1826)

    Google Scholar 

  101. Gautschi, W.: Orthogonal Polynomials, Computation and Approximation. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  102. Gerhards, C.: Spherical multiscale methods in terms of locally supported wavelets: theory and application to geomagnetic modeling. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2011)

    Google Scholar 

  103. Gervens, T.: Vektorkugelfunktionen mit Anwendungen in der Theorie der elastischen Verformungen für die Kugel. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen (1989)

    Google Scholar 

  104. Gill, A.E.: Atmosphere-Ocean Dynamics. Academic, New York (1982)

    Google Scholar 

  105. Górski, K.M., Hivon, E., Banday, A.J., Wandelt, B.D., Hansen, F.K., Reinecke, M., Bartelmann, M.: HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005)

    Article  Google Scholar 

  106. Grafarend, E.W.: Three-dimensional deformation analysis: global vector spherical harmonic and local finite element representation. Tectonophysics 130, 337–359 (1986)

    Article  Google Scholar 

  107. Grafarend, E.W., Klapp, M., Martinec, Z.: Spacetime modeling of the Earth’s gravity field by ellipsoidal harmonics. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, pp. 159–252. Springer, Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  108. Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. MIT, Cambridge (1988)

    MATH  Google Scholar 

  109. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(1), 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  110. Greengard, L., Rokhlin, V.: Rapid Evaluation of Potential Fields in Three Dimensions. In: Anderson, C., Greengard, L. (eds.) Vortex Methods, pp. 121–141. Springer, Berlin (1988)

    Chapter  Google Scholar 

  111. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6, 229–269 (1997)

    Article  MathSciNet  Google Scholar 

  112. Greville, T.N.E.: Introduction to spline functions. In: Greville, T.N.E. (ed.) Theory and Applications of Spline Functions, pp. 1–35. Academic, New York (1969)

    Google Scholar 

  113. Groten, E.: Geodesy and the Earth’s Gravity Field, vol. I and II. Dümmler, Bonn (1979)

    Google Scholar 

  114. Gürlebeck, K., Sprößig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Mathematical Research, vol. 56. Akademie Verlag, Berlin (1989)

    Google Scholar 

  115. Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and n-Dimensional Space. Birkhäuser, Basel/Boston/Berlin (2008)

    Google Scholar 

  116. Gurtin, M.E.: The Linear Theory of Elasticity. Handbuch der Physik, vol. 6, 2nd edn. Springer, Heidelberg (1972)

    Google Scholar 

  117. Gutting, M.: Fast multipole methods for oblique derivative problems. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen (2008)

    Google Scholar 

  118. Gutting, M.: Fast multipole accelerated solution of the oblique derivative boundary value problem. Int. J. Geomath. 3(2), 223–252 (2012)

    Article  MATH  Google Scholar 

  119. Haar, A.: Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. 69, 331–371 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  120. Hämmerlin, G., Hoffmann, K.-H.: Numerische Mathematik. Springer, Berlin/Heidelberg/ New York (1992)

    Book  MATH  Google Scholar 

  121. Hamilton, W.R.: Elements of Quaternions. Longmans Green, London (1866)

    Google Scholar 

  122. Hardy, G.H.: On the expression of a number as the sum of two squares. Q. J. Math. (Oxford) 46, 263–283 (1915)

    Google Scholar 

  123. Hardy, G.H., Landau, E.: The lattice points of a circle. Proc. R. Soc. A 105, 244–258 (1924)

    Article  MATH  Google Scholar 

  124. Hartman, P., Wilcox, C.: On solutions of the Helmholtz equation in exterior domains. Math. Z. 75, 228–255 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  125. Hecke, E.: Über orthogonal-invariante Integralgleichungen. Math. Ann. 78, 398–404 (1918)

    Article  MathSciNet  Google Scholar 

  126. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. A Hadron. Nucl. 43(3), 172–198 (1927)

    MATH  Google Scholar 

  127. Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)

    Google Scholar 

  128. Helms, L.L.: Introduction to Potential Theory. Wiley-Interscience, New York (1969)

    MATH  Google Scholar 

  129. Hesse, K., Sloan, I.H., Womersley, R.S.: Numerical integration on the sphere. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, pp. 1187–1220. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  130. Hielscher, R., Mainprice, D., Schaeben, H.: Material behavior: texture and anisotropy. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, pp. 973–1003. Springer, Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  131. Hilbert, D.: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Teubner, Leipzig (1912)

    MATH  Google Scholar 

  132. Hill, E.H.: The theory of vector spherical harmonics. Am. J. Phys. 22, 211–214 (1954)

    Article  MATH  Google Scholar 

  133. Hlawka, E.: Gleichverteilung auf Produkten von Sphären. J. Reine Angew. Math. 330, 1–43 (1982)

    MathSciNet  MATH  Google Scholar 

  134. Hlawka, E.: Näherungslösungen der Wellengleichung und verwandter Gleichungen durch zahlentheoretische Methoden. Öst. Akad. Wiss. Sber. II 193(8–10), 359–442 (1984)

    MathSciNet  MATH  Google Scholar 

  135. Hobson, E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Reprint Chelsea Publishing Company, New York (1955)

    Google Scholar 

  136. Hochstadt, H.: The Functions of Mathematical Physics. Wiley-Intersciences, New York (1971)

    MATH  Google Scholar 

  137. Hofmann-Wellenhof, B., Moritz, H.: Physical Geodesy. Springer, Vienna/New York (2005)

    Google Scholar 

  138. Ivanow, V.K.: Higher-dimensional generalization of the Euler summation formula (Russian). Izv. Vuz. Mat. 6(37), 72–80 (1963)

    Google Scholar 

  139. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)

    Google Scholar 

  140. James, R.W.: The Adams and Elsasser dynamo integrals. Proc. R. Soc. Lond. A 331, 469 (1973)

    Article  Google Scholar 

  141. James, R.W.: The spectral form of the magnetic induction equation. Proc. R. Soc. Lond. A 340, 287 (1974)

    Article  Google Scholar 

  142. James, R.W.: New tensor spherical harmonics, for application to the partial differential equations of mathematical physics. Philos. Trans. R. Soc. Lond. A 281, 195–221 (1976)

    Article  MATH  Google Scholar 

  143. Jänich, K.: Vektoranalysis, 5th edn. Springer, Berlin/Heidelberg (2004)

    Google Scholar 

  144. Jaswon, M.A., Symm, G.T.: Integral Equation Methods in Potential Theory and Elastostatics. Academic, London (1977)

    MATH  Google Scholar 

  145. Jones, N.M.: Spherical Harmonics and Tensors for Classical Field Theory. Research Studies Press/Wiley, New York (1985)

    MATH  Google Scholar 

  146. Kaula, W.M.: Theory of Satellite Geodesy. Blaisdell Company, Waltham (1966)

    Google Scholar 

  147. Kellogg, O.D.: Foundations of Potential Theory. Frederick Ungar Publishing Company, New York (1929)

    Google Scholar 

  148. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1996)

    Book  MATH  Google Scholar 

  149. Knopp, K.: Funktionentheorie II. Sammlung Göschen, Bd. 703. Walter de Gruyter & Co, Berlin (1971)

    Google Scholar 

  150. Knops, R.J., Payne, L.E.: Uniqueness Theorems in Linear Elasticity. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  151. Kotsiaris, S., Olsen, N.: The geomagnetic field gradient tensor. Int. J. Geomath. 3(2), 297–314 (2012)

    Article  Google Scholar 

  152. Krätzel, E.: Lattice Points. Kluwer Academic, Dordrecht/Boston/London (1988)

    MATH  Google Scholar 

  153. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)

    MATH  Google Scholar 

  154. Kupradze, V.D.: Potential Methods in the Theory of Elasticity. Israel Program for Scientific Translations, Jerusalem (1965)

    MATH  Google Scholar 

  155. Lai, M., Krempl, E., Ruben, D.: Introduction to Continuum Mechanics, 4th edn. Elsevier, Amsterdam (2010)

    Google Scholar 

  156. Laín Fernández, N., Prestin, J.: Localization of the spherical Gauß-Weierstrass kernel. In: Bojanov, B.D. (ed.) Constructive Theory of Functions, pp. 267–274. DA2BA, Sofia (2003)

    Google Scholar 

  157. Lamp, U., Schleicher, K.-T., Wendland, W.L.: The fast Fourier transform and the numerical solution of one-dimensional boundary integral equations. Numer. Math. 47, 15–38 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  158. Landau, E.: Über die Gitterpunkte in einem Kreise. I. Nachr. v. d. Gesellschaft d. Wiss. zu Göttingen, Math.-Phys. Klasse 148–160 (1915)

    Google Scholar 

  159. Landau, E.: Vorlesungen über Zahlentheorie. Chelsea Publishing Compagny, New York (1969) (reprint from the orignal version published by S. Hirzel, Leipzig (1927))

    MATH  Google Scholar 

  160. Landau, E.: Ausgewählte Abhandlungen zur Gitterlehre. VEB, Berlin (1962)

    Google Scholar 

  161. Landau, L.D., Lifshitz, L.M.: Quantum Mechanics. Course of Theoretical Physics, vol. 3, 3rd edn. Elsevier, Amsterdam (2004)

    Google Scholar 

  162. Lebedev, N.N.: Spezielle Funktionen und ihre Anwendungen. Bibliographisches Institut, Mannheim (1973)

    Google Scholar 

  163. Leis, R.: Vorlesungen über partielle Differentialgleichungen zweiter Ordnung. BI-Hochschultaschenbücher, 165/165a, Bibliographisches Institut, Mannheim (1967)

    Google Scholar 

  164. Lekkerkerker, C.G.: Geometry of Numbers. North Holland, Amsterdam/London (1969)

    MATH  Google Scholar 

  165. Lense, J.: Kugelfunktionen. Mathematik und ihre Anwendungen in Physik und Technik, Reihe A, vol. 23. Akademie Verlagsgesellschaft, Leipzig (1954)

    Google Scholar 

  166. Lesieur, M.: Turbulence in Fluids, Third Revised and Enlarged Edition. Kluwer Academic, Dordrecht/Boston/London (1997)

    Book  MATH  Google Scholar 

  167. Liu, H., Ryan, J.: Clifford analysis techniques for spherical PDE. J. Fourier Anal. Appl. 8(6), 535–563 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  168. Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart (1989)

    Book  MATH  Google Scholar 

  169. Lurje, A.: Räumliche Probleme der Elastizitätstheorie. Akademie Verlag, Berlin (1963)

    MATH  Google Scholar 

  170. Maclaurin, C.: A Treatise of Fluxions. Edinburgh (1742)

    Google Scholar 

  171. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 52, 3rd edn. Springer, Berlin (1966)

    Google Scholar 

  172. Maier, T.: Multiscale geomagnetic field modedlling from satellite data. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2003)

    Google Scholar 

  173. Maier, T.: Wavelet Mie representations for solenoidal fields with applications to ionospheric geomagnetic data. SIAM J. Appl. Math. 65(6), 1888–1912 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  174. Marion, M., Teman, R.: Non-linear Galerkin methods. SIAM J. Numer. Anal. 26(5), 1139–1157 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  175. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications, New York (1994)

    Google Scholar 

  176. Martensen, E.: Potentialtheorie. Leitfäden der Angewandten Mathematik und Mechanik, Bd. 12. Teubner, Leipzig (1968)

    Google Scholar 

  177. Mayer, C.: Wavelet modelling of ionospheric currents and induced magnetic fields from satellite data. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2003)

    Google Scholar 

  178. Messiah, A.: Quantenmechanik. Walter de Gruyter. Berlin/New York (1990)

    Google Scholar 

  179. Michel, V.: A multiscale method for the gravimetry Problem—theoretical and numerical aspects of harmonic and anharmonic modelling. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen, 1999

    Google Scholar 

  180. Michel, V.: Tomography: Problems and Multiscale Solutions. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, pp. 949–972. Springer, Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  181. Michel, V.: Lectures on Constructive Approximation—Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball. Birkhäuser, Boston (2012)

    Google Scholar 

  182. Michlin, S.G.: Mathematical Physics, an Advanced Course. North Holland, Amsterdam/London (1970)

    Google Scholar 

  183. Michlin, S.G.: Lehrgang der Mathematischen Physik, 2nd edn. Akademie Verlag, Berlin (1975)

    MATH  Google Scholar 

  184. Miranda, C.: Partial Differential Equations of Elliptic Type. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  185. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman, San Francisco (1973)

    Google Scholar 

  186. Mochizuki, E.: Spherical harmonic development of an elastic tensor. Geophys. J. Int. 93(3), 521–526 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  187. Moisil, G.C., Teodorescu, N.: Fonctions holomorphes dans l’espace. Mathematica (Cluj) 5, 142–159 (1931)

    Google Scholar 

  188. Mordell, L.J.: Poisson’s summation formula in several variables and some applications to the theory of numbers. Math. Proc. Camb. 25, 412–420 (1928)

    Article  Google Scholar 

  189. Mordell, L.J.: Poisson’s summation formula and the Riemann Zeta function. J. Lond. Math. Soc. 4, 285–296 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  190. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  191. Müller, C.: Über die ganzen Lösungen der Wellengleichung (nach einem Vortrag von G. Herglotz). Math. Ann. 124, 235–264 (1952)

    Google Scholar 

  192. Müller, C: Eine Verallgemeinerung der Eulerschen Summenformel und ihre Anwendung auf Fragen der analytischen Zahlentheorie. Abh. Math. Sem. Univ. Hamburg 19, 41–61 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  193. Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966)

    Google Scholar 

  194. Müller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin (1969)

    MATH  Google Scholar 

  195. Müller, C.: Analysis of Spherical Symmetries in Euclidean Spaces. Springer, New York/Berlin/ Heidelberg (1998)

    Book  MATH  Google Scholar 

  196. Müller, C., Dressler, A.: Über eine gewichtete Mittelung der Gitterpunkte in der Ebene. J. Reine Angew. Math. 252, 82–87 (1972)

    MathSciNet  MATH  Google Scholar 

  197. Nashed, M.Z.: On moment-discretization and least-squares solutions of linear integral equations of the first kind. J. Math. Anal. Appl. 53, 359–366 (1976a)

    Article  MathSciNet  MATH  Google Scholar 

  198. Nashed, M.Z.: Generalized Inverses and Applications. Academic, New York (1976b)

    MATH  Google Scholar 

  199. Nashed, M.Z., Whaba, G.: Generalized inverses in reproducing kernel spacxes: an approach to regularization of linear operator equations. SIAM J. Math. Anal. 5, 974–987 (1974)

    Article  MathSciNet  Google Scholar 

  200. Nashed, M.Z.: Operator-theoretic and computational approaches to ill-posed problems with applications to antenna theory. IEEE Trans. Antenn. Propag. 29, 220–231 (1981)

    Article  MathSciNet  Google Scholar 

  201. Newton, I.: Philosophiæ Naturalis Principia Mathematica, vol. 3, De Munde Systemate (1687)

    Google Scholar 

  202. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Method. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  203. Nielsen, N.: Handbuch der Theorie der Gammafunktion. Teubner, Leipzig (1906)

    Google Scholar 

  204. Niemeyer, H.: Lokale und asympotische Eigenschaften der Lösung der Helmholtzschen Schwingungsgleichung. Jahresbericht d. DMV 65, 1–44 (1962)

    MathSciNet  MATH  Google Scholar 

  205. Nijboer, B.R.A., de Wette, F.W.: On the calculation of lattice sums. Physica 23, 309–321 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  206. Norbury, J., Roulstone, I.: Large-Scale Atmospere-Ocean Dynamics I. Analytic Methods and Numerical Methods. Cambridge University Press, Cambridge (2002a)

    Book  Google Scholar 

  207. Norbury, J., Roulstone, I.: Large-Scale Atmospere-Ocean Dynamics II, Geometric Methods and Models. Cambridge University Press, Cambridge (2002b)

    Book  Google Scholar 

  208. Nutz, H.: A unified setup of gravitational field observables. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen, 2002

    Google Scholar 

  209. Ostermann, I.: Modeling heat transport in deep geothermal systems by radial basis functions. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2011)

    Google Scholar 

  210. Pail, R., Plank, G.: Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. J. Geod. 76, 462–474 (2002)

    Article  MATH  Google Scholar 

  211. Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes, 4th edn. McGraw-Hill, New York (2002)

    Google Scholar 

  212. Pedlowsky, J.: Geophysical Fluid Dynamics. Springer, New York/Heidelberg/Berlin (1979)

    Book  Google Scholar 

  213. Qian, T., Hempfling, T., McIntosh, A., Sommen, F. (eds.): Advances in Analysis and Geometry: New Developments Using Clifford Algebras. Trends in Mathematics. Birkhäuser, Basel (2004)

    MATH  Google Scholar 

  214. Rademacher, H.: Topics in Analytic Number Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 169. Springer, Berlin/Heidelberg/New York (1973)

    Google Scholar 

  215. Rakhmanov, E.A., Saff, E.B., Zhou Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1, 647–662 (1994)

    MathSciNet  MATH  Google Scholar 

  216. Reed, M., Simon, B.: Functional Analysis I. Academic, New York (1972)

    Google Scholar 

  217. Reuter, R.: Über Integralformeln der Einheitssphäre und harmonische Splinefunktionen. Ph.D. thesis, Veröff. Geod. Inst. RWTH Aachen, Report No. 33, 1982

    Google Scholar 

  218. Richter, L.: Über die Inversion einer Legendreschen Integraltransformation und ihre Anwendung. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, 1971

    Google Scholar 

  219. Rieder, A.: Keine Probleme mit inversen Problemen. Vieweg, Wiesbaden (2003)

    Book  MATH  Google Scholar 

  220. Rivlin, T.J.: Chebychev Polynomials, 2nd edn. Wiley, New York (1990)

    Google Scholar 

  221. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60, 187–207 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  222. Rose, M.E.: Elementary Theory of Angular Momentum. Wiley, New York/London/Sydney (1957)

    MATH  Google Scholar 

  223. Rudin, W.: Functional Analysis. McGraw-Hill, Boston (1991)

    MATH  Google Scholar 

  224. Rummel, R., van Gelderen, M.: Spectral analysis of the full gravity tensor. Geophys. J. Int. 111, 159–169 (1992)

    Article  Google Scholar 

  225. Rvachev, V.A.: Compactly supported solutions of functional-differential equations and their applications. Russ. Math. Surv. 45, 87–120 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  226. Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19(1), 5–11 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  227. Sard, A.: Best approximate integration formulas. Am. J. Math. 71, 80–91 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  228. Sauter, S.A.: Der Aufwand der Panel-Clustering-Methode für Integralgleichungen. Technical Report 9115, Institute for Computer Science and Applied Mathematics, University of Kiel (1991)

    Google Scholar 

  229. Schaeben, H., van den Boogaart, K.G.: Spherical harmonics in texture analysis. Tectonophysics 370, 253–268 (2003)

    Article  Google Scholar 

  230. Schmidt, K.E., Lee, M.A.: Implementing the fast multipole method in three dimensions. J. Stat. Phys. 63 1223–1235 (1991)

    Article  Google Scholar 

  231. Schoenberg, I.J.: On trigonometric spline interpolation. J. Math. Mech. 13, 795–825 (1964)

    MathSciNet  MATH  Google Scholar 

  232. Schreiner, M.: Tensor spherical harmonics and their application in satellite gradiometry. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (1994)

    Google Scholar 

  233. Schulten, K., Gordon, R.G.: Exact recursive evaluation of 3j- and 6j-coefficients for quantum-mechanical coupling of angular momentum. J. Math. Phys. 16(10), 1961–1970 (1975)

    Article  MathSciNet  Google Scholar 

  234. Schulten, K., Gordon, R.G.: Recursive evaluation of 3j and 6j coefficients. Comput. Phys. Commun. 11, 269–278 (1976)

    Article  Google Scholar 

  235. Schumaker, L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)

    MATH  Google Scholar 

  236. Shore, B.W., Menzel, D.H.: Principles of Atomic Spectra. Wiley, New York/London/Sydney (1968)

    Google Scholar 

  237. Sieber, N., Sebastian, H.-J.: Spezielle Funktionen, 3rd edn. B.G. Teubner, Leipzig (1988)

    MATH  Google Scholar 

  238. Sneddon, I.N.: Special Functions of Mathematical Physics and Chemistry, 3rd edn. Longman, New York (1980)

    MATH  Google Scholar 

  239. Sneeuw, N.: A semi-analytical approach to gravity field analysis from satellite observations. Ph.D. thesis, TU Munich, Deutsche Geodätische Kommission, Reihe A, 527 (2000)

    Google Scholar 

  240. Sommerfeld, A.: Partielle Differentialgleichnugen der Physik, 6th edn. Akademische Verlagsgesellschaft, Leipzig (1966)

    Google Scholar 

  241. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  242. Strubecker, K.: Differentialgeometrie I, II. Sammlung Göschen, de Gruyter, Berlin (1964)

    Google Scholar 

  243. Szegö, G.: Orthogonal Polynomials. American Mathematical Society, Rhode Island (1967)

    Google Scholar 

  244. Teman, R.: Navier–Stokes Equations: Theory and Numerical Analyis. North-Holland, Amsterdam/Newyork/Oxford (1979)

    Google Scholar 

  245. Teman, R.: Navier–Stokes Equations and Non-Linear Functional Analysis. SIAM, Philadelphia (1983)

    Google Scholar 

  246. Thomson, K.: Generalized Spiral Points: Further Improvement. https://groups.google.com/d/topic/sci.math/CYMQX7HO1Cw/discussion (2007). Cited 17 Jul 2012.

  247. Tichy, R.F.: Ein Approximationsverfahren zur Lösung spezieller partieller Differentialgleichungen. ZAMM. 68, 187–188 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  248. Tichy, R.F.: Random points in the cube and on the sphere with applications to numerical analysis. J. Comput. Appl. Math. 31(1), 191–197 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  249. Titchmarsh, E.C.: The Theory of Riemann Zeta-Function. Clarendon, Oxford (1951)

    MATH  Google Scholar 

  250. Torge, W.: Geodesy, 3rd edn. de Gruyter, Berlin (2001)

    Google Scholar 

  251. Tscherning, C.C.: Computation of the second-order derivatives of the normal potential based on the representation by a Legendre series. Manusc. Geodaet. 1, 71–92 (1976)

    Google Scholar 

  252. Tscherning, C.C.: Isotropic reproducing kernels for the inner of a sphere or spherical shell and their use as density covariance functions. Math. Geol. 28, 161–168 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  253. van der Corput, B.L.: Verteilungsfunktionen I. Proc. Nederl. Akad. Wetensch. 38, 813–821 (1935a)

    Google Scholar 

  254. van der Corput, B.L.: Verteilungsfunktionen II. Proc. Nederl. Akad. Wetensch. 38, 1058–1066 (1935b)

    Google Scholar 

  255. van der Waerden, B.L.: Mathematical Statistics. Springer, Heidelberg (1969)

    MATH  Google Scholar 

  256. Vars̆alovic̆, D.A., Moskalev, A.N., Chersonskij, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)

    Google Scholar 

  257. Vilenkin, N.J.: Special Functions and the Theory of Group Representations. Translations of Mathematical Monographs, vol. 22. American Mathematical Society, Providence (1968)

    Google Scholar 

  258. Wahba, G.: Spline interpolation and smoothing on the sphere. SIAM J. Sci. Stat. Comp. 2, 5–16 (1981) (also errata: SIAM J. Sci. Stat. Comp. 3, 385–386 (1982))

    Google Scholar 

  259. Walfisz, A.: Gitterpunkte in mehrdimensionalen Kugeln. Acta Arith. 6, 115–136, 193–215 (1960)

    MathSciNet  Google Scholar 

  260. Wangerin, A.: Theorie des Potentials und der Kugelfunktionen (I,II). de Gruyter, Leipzig (1921)

    Google Scholar 

  261. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

  262. Weyl, H.: The Theory of Groups and Quantum Mechanics. E.P. Dutton, New York (1931)

    MATH  Google Scholar 

  263. Wienholtz, E., Kalf, H., Kriecherbauer, T.: Elliptische Differentialgleichungen zweiter Ordnung. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  264. Wienkamp, R.: Über eine Klasse verallgemeinerter Zetafunktionen. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen (1958)

    Google Scholar 

  265. White, C.A., Head-Gordon, M.: Rotating around the quartic angular momentum barrier in fast multipole method calculations. J. Chem. Phys. 105(12), 5061–5067 (1996)

    Article  Google Scholar 

  266. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1948)

    Google Scholar 

  267. Xu, C., Sneeuw, N., Sideris, M.G.: The torus approach in spaceborne gravimetry. In: Xu, P., Liu, J., Dermanis, A. (eds.) IAG Symposium, vol. 132, pp. 23–28. Springer, Heidelberg (2008)

    Google Scholar 

  268. Yoshida, K.: Functional Analysis. Springer, Berlin (1980)

    Book  Google Scholar 

  269. Zare, R.N.: Angular Momentum. Wiley-Interscience, New York (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Freeden, W., Gutting, M. (2013). Concluding Remarks. In: Special Functions of Mathematical (Geo-)Physics. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0563-6_11

Download citation

Publish with us

Policies and ethics