Skip to main content

Recent Advances Related to SPDEs with Fractional Noise

  • Conference paper
  • First Online:
Book cover Seminar on Stochastic Analysis, Random Fields and Applications VII

Part of the book series: Progress in Probability ((PRPR,volume 67))

Abstract

We review the literature related to stochastic partial differential equations with spatially-homogeneous Gaussian noise, and explain how one can introduce the structure of the fractional Brownian motion into the temporal component of the noise. The Hurst parameter H is assumed to be greater than 1/2. In the case of linear equations, we revisit the conditions for the existence of a mild solution. In the nonlinear case, we point out what are the difficulties due to the fractional component of the noise. These difficulties can be avoided in the case of equations with multiplicative noise, since in this case, the solution has a known Wiener chaos decomposition. Finally, this methodology is applied to the wave equation (in arbitrary dimension d ≥ 1), driven by a Gaussian noise which has a spatial covariance structure given by the Riesz kernel.

Mathematics Subject Classification (2010). Primary 60H15; Secondary 60H07.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M. Balan, Linear SPDEs driven by a fractional noise with Hurst index greater than 1/2. Preprint available on arXiv:1102.3992.

    Google Scholar 

  2. R.M. Balan, Linear SPDEs driven by stationary random distributions. J. Fourier Anal. Appl., to appear.

    Google Scholar 

  3. R.M. Balan, The stochastic wave equation with multiplicative fractional noise: a Malliavin calculus approach. Potential Anal., 36 (2012), 1–34.

    Article  MathSciNet  MATH  Google Scholar 

  4. R.M. Balan, L p -theory for the stochastic heat equation with infinite-dimensional fractional noise. ESAIM: Prob. & Stat., 15 (2011), 110–138.

    Article  MathSciNet  MATH  Google Scholar 

  5. R.M. Balan and C.A. Tudor, The stochastic heat equation with fractional-colored noise: existence of the solution. Latin Amer. J. Probab. Math. Stat., 4 (2008), 57–87.

    MathSciNet  MATH  Google Scholar 

  6. R.M. Balan and C.A. Tudor, The stochastic wave equation with fractional noise: a random field approach. Stoch. Proc. Appl., 120 (2010), 2468–2494.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Conus and R.C. Dalang, The non-linear stochastic wave equation in high dimensions. Electr. J. Probab., 22 (2009), 629–670.

    MathSciNet  Google Scholar 

  8. R.C. Dalang, Extending martingale measure stochastic integral with applications to spatially homogenous s.p.d.e.’s. Electr. J. Probab., 4 (1999), 1–29.

    Google Scholar 

  9. R.C. Dalang and N.E. Frangos, The stochastic wave equation in two spatial dimensions. Ann. Probab., 26 (1998), 187–212.

    Article  MathSciNet  MATH  Google Scholar 

  10. R.C. Dalang and C. Mueller, Some non-linear s.p.d.e.’s that are second-order in time. Electr. J. Probab., 8 (2003).

    Google Scholar 

  11. R.C. Dalang, C. Mueller, and R. Tribe, A Feynman–Kac-type formula for the deterministic and stochastic wave equations and other p.d.e.’s. Trans. AMS, 360 (2008), 4681–4703.

    Google Scholar 

  12. R.C. Dalang and L. Quer-Sardanyons, Stochastic integrals for spde’s: a comparison. Expo. Math., 29 (2011), 67–109.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Dawson and H. Salehi, Spatially homogeneous random evolutions. J. Multiv. Anal. 10 (1980), 141–180.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. Cambridge University Press, 1992.

    Google Scholar 

  15. W. Desch and S.-O. Londen, An L p -theory for stochastic integral equations. J. Evol. Equations, to appear.

    Google Scholar 

  16. T.E. Duncan, B. Maslowski and B. Pasik-Duncan, Fractional Brownian motion and stochastic equations in Hilbert spaces. Stoch. Dyn., 2 (2002), 225–250.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Ferrante and M. Sanz-Solé, SPDEs with coloured noise: analytic and stochastic approaches. ESAIM: Prob. & Stat., 10 (2006), 380–405.

    Article  MATH  Google Scholar 

  18. I.M. Gelfand and N.Ya. Vilenkin, Generalized Functions. Vol. 4. Applications of Harmonic Analysis. Academic Press, 1964.

    Google Scholar 

  19. W. Grecksch and V.V. Anh, A parabolic stochastic differential equation with fractional Brownian motion input. Stat. Probab. Lett., 41 (1999), 337–346.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Hu and D. Nualart, Stochastic heat equation driven by fractional noise and local time. Probab. Th. Rel. Fields, 143 (2009), 285–328.

    Article  MathSciNet  MATH  Google Scholar 

  21. Y. Hu, D. Nualart, and J. Song, Feynman–Kac formula for heat equation driven by fractional white noise. Ann. Probab., 39 (2011), 291–326.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Hu, D. Nualart, and J. Song, Feynman–Kac formula for the heat equation driven by fractional noise with Hurst parameter H < 1/2. Preprint available on arXiv:1007.5507.

    Google Scholar 

  23. I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Second edition, Springer, 1991.

    Google Scholar 

  24. D. Khoshnevisan, Multiparameter Processes. An Introduction to Random Fields. Springer, 2002.

    Google Scholar 

  25. A.N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C.R. (Doklady) Acad. USSR (N.S.), 26 (1940), 115–118.

    Google Scholar 

  26. G. Kallianpur and J. Xiong, Stochastic Differential Equations in Infinite Dimensiona Spaces. IMS Lect. Notes 26, Hayward, CA, 1995.

    Google Scholar 

  27. N.V. Krylov, On L p -theory of stochastic partial differential equations. SIAM J. Math. Anal., 27 (1996), 313–340.

    Article  MathSciNet  MATH  Google Scholar 

  28. N.V. Krylov, An analytic approach to SPDEs. In Stochastic Partial Differential Equations: Six Perspectives, 64, Math. Surveys Monogr. AMS, Providence RI, (1999), 185–242.

    Google Scholar 

  29. N.V. Krylov and B.L. Rozovsky, Stochastic evolution systems. Russian Math. Surveys, 37 (1982), 81–105.

    Article  MATH  Google Scholar 

  30. B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion. J. Funct. Anal., 202 (2003), 277–305.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Memin, Y. Mishura and E. Valkeila, Inequalities for the moments of Wiener integrals with respect to fractional Brownian motions. Statist. Prob. Letters, 55 (2001), 421–430.

    Article  MathSciNet  Google Scholar 

  32. O. Mocioalca and F. Viens, Skorohod integration and stochastic calculus beyond the fractional Brownian scale. J. Funct. Anal., 222 (2005), 385–434.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Nualart, Malliavin Calculus and Related Topics. 2nd Edition, Springer-Verlag, 2006.

    Google Scholar 

  34. B.L. Rozovsky, Stochastic Evolution Equations. Linear Theory and Applications to Non-linear Filtering. Kluwer, 1990.

    Google Scholar 

  35. M. Sanz-Solé, Malliavin Calculus with Applications to Stochastic Partial Differential Equations. EPFL Press, 2005.

    Google Scholar 

  36. E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970.

    Google Scholar 

  37. S. Tindel, C.A. Tudor and F. Viens, Stochastic evolution equations with fractional Brownian motion. Probab. Th. Rel. Fields, 127 (2003), 186–204.

    Article  MathSciNet  MATH  Google Scholar 

  38. B. Tsirelson, Nonclassical stochastic flows and continuous products. Probab. Surveys, 1 (2004), 173–298.

    Article  MathSciNet  MATH  Google Scholar 

  39. J.B. Walsh, An introduction to stochastic partial differential equations. École d’Été de Probabilités de Saint-Flour XIV, Lecture Notes in Math. 1180, 265–439, Springer-Verlag, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raluca M. Balan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Balan, R.M. (2013). Recent Advances Related to SPDEs with Fractional Noise. In: Dalang, R., Dozzi, M., Russo, F. (eds) Seminar on Stochastic Analysis, Random Fields and Applications VII. Progress in Probability, vol 67. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0545-2_1

Download citation

Publish with us

Policies and ethics