Host Defense Peptides: Immune Modulation and Antimicrobial Activity In Vivo

  • Nicole J. Afacan
  • Laure M. Janot
  • Robert E. W. Hancock
Part of the Progress in Inflammation Research book series (PIR)


Cationic host defense peptides (HDPs), a vital component of the innate immune system, are amphipathic molecules of 12–50 amino acids in length and are produced by numerous cell types, either constitutively or in response to inflammatory stimuli. In addition to their antimicrobial and immunomodulatory properties, novel roles have been attributed to HDPs including promoting chemotaxis of immune cells, limiting inflammation/sepsis, promoting wound healing, regulating metabolism, and enhancing vaccine responses. These properties make HDPs a novel class of anti-infectives that can be exploited to treat immune and inflammatory disorders as well as infectious diseases. The emergence of multi-resistant bacteria is a major challenge facing modern healthcare since very few novel antibiotic agents are available. HDPs and their synthetic derivatives provide extremely valuable leads in the development of new treatment strategies for multi-resistant bacterial infections. This chapter reviews our basic knowledge on HDPs and synthetic cationic peptides and focuses on their current clinical application as anti-infectives, immunomodulators, and anticancer treatments. Challenges to their development as new therapeutics are also discussed.


Host defense peptides Antimicrobial Immunomodulatory Cathelicidins Defensins Innate defense regulators 



Adenosine triphosphate


Bactericidal/permeability-increasing protein


Bone marrow-derived DCs


Bovine respiratory syncytial virus


Cathelicidin antimicrobial peptide


Centers for Disease Control and Prevention


Cystic fibrosis


Cystic fibrosis transmembrane conductance regulator


Epidermal growth factor receptor


Food and Drug Administration




Group A Streptococcus


Granulocyte colony-stimulating factor


Granulocyte-macrophages colony-stimulating factor


Histatin 5


Host defense peptide


Human beta defensin


Hypoxia-inducible factor-1α


Human leukocyte antigen


Human lactoferrin


Human neutrophil protein




Infectious Disease Society of America


Innate defense regulator


Institute of Medicine


Interferon gamma-induced protein 10 kDa








Lipoteichoic acid


Macrophage inflammatory protein


Melanocortin-1 receptor


Melanocyte-stimulating hormone


Methicillin-resistant S. aureus strains


Monocyte chemotactic protein






Plasmacytoid dendritic cell


Polyinosinic-polycytidylic acid




Quantitative structure-activity relationship




Reactive nitrogen species


Reactive oxygen species


Toll-like receptor


Tumor necrosis factor


Vascular endothelial growth factor



The authors are grateful for the financial support provided by the Foundation for the National Institutes of Health, the Bill & Melinda Gates Foundation and the Canadian Institutes of Health Research through the Grand Challenges in Global Health initiative and Genome BC for the Pathogenomics of Innate Immunity research program. R.E.W. Hancock is the recipient of a Canada Research Chair. N.J. Afacan holds a studentship from the Natural Sciences and Engineering Research Council of Canada.


  1. Aerts AM, Francois IE, Cammue BP, Thevissen K (2008) The mode of antifungal action of plant, insect and human defensins. Cell Mol Life Sci 65(13):2069–2079. doi: 10.1007/s00018-008-8035-0 PubMedGoogle Scholar
  2. Alalwani SM, Sierigk J, Herr C, Pinkenburg O, Gallo R, Vogelmeier C et al (2010) The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophils. Eur J Immunol 40(4):1118–1126. doi: 10.1002/eji.200939275 PubMedGoogle Scholar
  3. Andersen GN, Hagglund M, Nagaeva O, Frangsmyr L, Petrovska R, Mincheva-Nilsson L et al (2005) Quantitative measurement of the levels of melanocortin receptor subtype 1, 2, 3 and 5 and pro-opio-melanocortin peptide gene expression in subsets of human peripheral blood leucocytes. Scand J Immunol 61(3):279–284. doi: SJI1565 [pii] 10.1111/j.1365-3083.2005.01565.xPubMedGoogle Scholar
  4. Barlow PG, Li Y, Wilkinson TS, Bowdish DM, Lau YE, Cosseau C et al (2006) The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system. J Leukoc Biol 80(3):509–520. doi: jlb.1005560 [pii] 10.1189/jlb.1005560PubMedGoogle Scholar
  5. Barlow PG, Beaumont PE, Cosseau C, Mackellar A, Wilkinson TS, Hancock RE et al (2010) The human cathelicidin LL-37 preferentially promotes apoptosis of infected airway epithelium. Am J Respir Cell Mol Biol 43(6):692–702. doi: 2009-0250OC [pii] 10.1165/rcmb.2009-0250OCPubMedGoogle Scholar
  6. Baroni A, Donnarumma G, Paoletti I, Longanesi-Cattani I, Bifulco K, Tufano MA et al (2009) Antimicrobial human beta-defensin-2 stimulates migration, proliferation and tube formation of human umbilical vein endothelial cells. Peptides 30(2):267–272. doi: S0196-9781(08)00460-9 [pii] 10.1016/j.peptides.2008.11.001PubMedGoogle Scholar
  7. Bell G, Gouyon PH (2003) Arming the enemy: the evolution of resistance to self-proteins. Microbiology 149(Pt 6):1367–1375PubMedGoogle Scholar
  8. Benincasa M, Scocchi M, Pacor S, Tossi A, Nobili D, Basaglia G et al (2006) Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts. J Antimicrob Chemother 58(5):950–959. doi: dkl382 [pii] 10.1093/jac/dkl382PubMedGoogle Scholar
  9. Bhardwaj R, Becher E, Mahnke K, Hartmeyer M, Schwarz T, Scholzen T et al (1997) Evidence for the differential expression of the functional alpha-melanocyte-stimulating hormone receptor MC-1 on human monocytes. J Immunol 158(7):3378–3384PubMedGoogle Scholar
  10. Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92. doi: 10.1146/annurev.iy.13.040195.000425 PubMedGoogle Scholar
  11. Bommarius B, Jenssen H, Elliott M, Kindrachuk J, Pasupuleti M, Gieren H et al (2010) Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 31(11):1957–1965. doi: S0196-9781(10)00348-7 [pii] 10.1016/j.peptides.2010.08.008PubMedGoogle Scholar
  12. Bowdish DM, Davidson DJ, Speert DP, Hancock RE (2004) The human cationic peptide LL-37 induces activation of the extracellular signal-regulated kinase and p38 kinase pathways in primary human monocytes. J Immunol 172(6):3758–3765PubMedGoogle Scholar
  13. Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE (2005a) Impact of LL-37 on anti-infective immunity. J Leukoc Biol 77(4):451–459. doi: jlb.0704380 [pii] 10.1189/jlb.0704380PubMedGoogle Scholar
  14. Bowdish DM, Davidson DJ, Scott MG, Hancock RE (2005b) Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother 49(5):1727–1732. doi: 49/5/1727 [pii] 10.1128/AAC.49.5.1727-1732.2005PubMedGoogle Scholar
  15. Braff MH, Hawkins MA, Di Nardo A, Lopez-Garcia B, Howell MD, Wong C et al (2005) Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities. J Immunol 174(7):4271–4278. doi: 174/7/4271 [pii]PubMedGoogle Scholar
  16. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. doi: nrmicro1098 [pii] 10.1038/nrmicro1098PubMedGoogle Scholar
  17. Brogden KA, Heidari M, Sacco RE, Palmquist D, Guthmiller JM, Johnson GK et al (2003) Defensin-induced adaptive immunity in mice and its potential in preventing periodontal disease. Oral Microbiol Immunol 18(2):95–99. doi: 047 [pii]PubMedGoogle Scholar
  18. Broglio F, Grottoli S, Arvat E, Ghigo E (2008) Endocrine actions of cortistatin: in vivo studies. Mol Cell Endocrinol 286(1–2):123–127. doi: S0303-7207(07)00477-7 [pii] 10.1016/j.mce.2007.12.012PubMedGoogle Scholar
  19. Brown KL, Hancock RE (2006) Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18(1):24–30. doi: S0952-7915(05)00199-8 [pii] 10.1016/j.coi.2005.11.004PubMedGoogle Scholar
  20. Brzoska T, Luger TA, Maaser C, Abels C, Bohm M (2008) Alpha-melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr Rev 29(5):581–602. doi: er.2007-0027 [pii] 10.1210/er.2007-0027PubMedGoogle Scholar
  21. Busso N, So A, Chobaz-Peclat V, Morard C, Martinez-Soria E, Talabot-Ayer D et al (2002) Leptin signaling deficiency impairs humoral and cellular immune responses and attenuates experimental arthritis. J Immunol 168(2):875–882PubMedGoogle Scholar
  22. Carlsson G, Wahlin YB, Johansson A, Olsson A, Eriksson T, Claesson R et al (2006) Periodontal disease in patients from the original Kostmann family with severe congenital neutropenia. J Periodontol 77(4):744–751. doi: 10.1902/jop. 2006.050191PubMedGoogle Scholar
  23. Carvalho-Oliveira I, Scholte BJ, Penque D (2007) What have we learned from mouse models for cystic fibrosis? Expert Rev Mol Diagn 7(4):407–417. doi: 10.1586/14737159.7.4.407PubMedGoogle Scholar
  24. Chavakis T, Cines DB, Rhee JS, Liang OD, Schubert U, Hammes HP et al (2004) Regulation of neovascularization by human neutrophil peptides (alpha-defensins): a link between inflammation and angiogenesis. FASEB J 18(11):1306–1308. doi: 10.1096/fj.03-1009fje 03-1009fje [pii]PubMedGoogle Scholar
  25. Chen Y, Mant CT, Farmer SW, Hancock RE, Vasil ML, Hodges RS (2005) Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280(13):12316–12329. doi: M413406200 [pii] 10.1074/jbc.M413406200PubMedGoogle Scholar
  26. Chen Q, Hakimi M, Wu S, Jin Y, Cheng B, Wang H et al (2010) Increased genomic copy number of DEFA1/DEFA3 is associated with susceptibility to severe sepsis in Chinese Han population. Anesthesiology 112(6):1428–1434. doi: 10.1097/ALN.0b013e3181d968eb 00000542-201006000-00022 [pii]PubMedGoogle Scholar
  27. Cherkasov A, Hilpert K, Jenssen H, Fjell CD, Waldbrook M, Mullaly SC et al (2009) Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem Biol 4(1):65–74. doi: 10.1021/cb800240j 10.1021/cb800240j [pii]PubMedGoogle Scholar
  28. Chernova I, Lai JP, Li H, Schwartz L, Tuluc F, Korchak HM et al (2009) Substance P (SP) enhances CCL5-induced chemotaxis and intracellular signaling in human monocytes, which express the truncated neurokinin-1 receptor (NK1R). J Leukoc Biol 85(1):154–164. doi: jlb.0408260 [pii] 10.1189/jlb.0408260PubMedGoogle Scholar
  29. Chertov O, Michiel DF, Xu L, Wang JM, Tani K, Murphy WJ et al (1996) Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem 271(6):2935–2940PubMedGoogle Scholar
  30. Chong KT, Thangavel RR, Tang X (2008) Enhanced expression of murine beta-defensins (MBD-1, -2,- 3, and -4) in upper and lower airway mucosa of influenza virus infected mice. Virology 380(1):136–143. doi: S0042-6822(08)00480-7 [pii] 10.1016/j.virol.2008.07.024PubMedGoogle Scholar
  31. Chromek M, Slamova Z, Bergman P, Kovacs L, Podracka L, Ehren I et al (2006) The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12(6):636–641. doi: nm1407 [pii] 10.1038/nm1407PubMedGoogle Scholar
  32. Cirioni O, Giacometti A, Ghiselli R, Bergnach C, Orlando F, Silvestri C et al (2006) LL-37 protects rats against lethal sepsis caused by gram-negative bacteria. Antimicrob Agents Chemother 50(5):1672–1679. doi: 50/5/1672 [pii] 10.1128/AAC.50.5.1672-1679.2006PubMedGoogle Scholar
  33. Cooper A, Robinson SJ, Pickard C, Jackson CL, Friedmann PS, Healy E (2005) Alpha-melanocyte-stimulating hormone suppresses antigen-induced lymphocyte proliferation in humans independently of melanocortin 1 receptor gene status. J Immunol 175(7):4806–4813. doi: 175/7/4806 [pii]PubMedGoogle Scholar
  34. Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112(5):645–657. doi: S0092867403001545 [pii]PubMedGoogle Scholar
  35. Daher KA, Selsted ME, Lehrer RI (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60(3):1068–1074PubMedGoogle Scholar
  36. David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23(3):616–687. doi: 23/3/616 [pii] 10.1128/CMR.00081-09PubMedGoogle Scholar
  37. De Rosa V, Procaccini C, La Cava A, Chieffi P, Nicoletti GF, Fontana S et al (2006) Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J Clin Invest 116(2):447–455. doi: 10.1172/JCI26523 PubMedGoogle Scholar
  38. De Vry CG, Valdez M, Lazarov M, Muhr E, Buelow R, Fong T et al (2005) Topical application of a novel immunomodulatory peptide, RDP58, reduces skin inflammation in the phorbol ester-induced dermatitis model. J Invest Dermatol 125(3):473–481. doi: JID23831 [pii] 10.1111/j.0022-202X.2005.23831.xPubMedGoogle Scholar
  39. De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J et al (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192(7):1069–1074Google Scholar
  40. Delgado M, Ganea D (2008) Anti-inflammatory neuropeptides: a new class of endogenous immunoregulatory agents. Brain Behav Immun 22(8):1146–1151. doi: S0889-1591(08)00271-7 [pii] 10.1016/j.bbi.2008.06.001PubMedGoogle Scholar
  41. Di Nardo A, Yamasaki K, Dorschner RA, Lai Y, Gallo RL (2008) Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin. J Immunol 180(11):7565–7573. doi: 180/11/7565 [pii]PubMedGoogle Scholar
  42. Ding J, Chou YY, Chang TL (2009) Defensins in viral infections. J Innate Immun 1(5):413–420. doi: 000226256 [pii] 10.1159/000226256PubMedGoogle Scholar
  43. Economopoulou M, Bdeir K, Cines DB, Fogt F, Bdeir Y, Lubkowski J et al (2005) Inhibition of pathologic retinal neovascularization by alpha-defensins. Blood 106(12):3831–3838. doi: 2005-03-0889 [pii] 10.1182/blood-2005-03-0889PubMedGoogle Scholar
  44. Elad S, Epstein JB, Raber-Durlacher J, Donnelly P, Strahilevitz J (2012) The antimicrobial effect of Iseganan HCl oral solution in patients receiving stomatotoxic chemotherapy: analysis from a multicenter, double-blind, placebo-controlled, randomized, phase III clinical trial. J Oral Pathol Med 41(3):229–234. doi: 10.1111/j.1600-0714.2011.01094.xPubMedGoogle Scholar
  45. Faggioni R, Jones-Carson J, Reed DA, Dinarello CA, Feingold KR, Grunfeld C et al (2000) Leptin-deficient (ob/ob) mice are protected from T cell-mediated hepatotoxicity: role of tumor necrosis factor alpha and IL-18. Proc Natl Acad Sci USA 97(5):2367–2372. doi: 10.1073/pnas.040561297 040561297 [pii]PubMedGoogle Scholar
  46. Fahlgren A, Hammarstrom S, Danielsson A, Hammarstrom ML (2003) Increased expression of antimicrobial peptides and lysozyme in colonic epithelial cells of patients with ulcerative colitis. Clin Exp Immunol 131(1):90–101. doi: 2035 [pii]PubMedGoogle Scholar
  47. Falco A, Brocal I, Perez L, Coll JM, Estepa A, Tafalla C (2008) In vivo modulation of the rainbow trout (Oncorhynchus mykiss) immune response by the human alpha defensin 1, HNP1. Fish Shellfish Immunol 24(1):102–112. doi: S1050-4648(07)00163-5 [pii] 10.1016/j.fsi.2007.09.007PubMedGoogle Scholar
  48. Falla TJ, Zhang L (2010) Efficacy of hexapeptide-7 on menopausal skin. J Drugs Dermatol 9(1):49–54PubMedGoogle Scholar
  49. Fang HY, Hughes R, Murdoch C, Coffelt SB, Biswas SK, Harris AL et al (2009) Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 114(4):844–859. doi: blood-2008-12-195941 [pii] 10.1182/blood-2008-12-195941PubMedGoogle Scholar
  50. FDA (2004) Innovation/stagnation: challenge and opportunity on the critical path to new medical products (USDoHH Services, Trans.). MD Food & Drug Administration, Silver Spring, pp 1–38Google Scholar
  51. Fellermann K, Stange DE, Schaeffeler E, Schmalzl H, Wehkamp J, Bevins CL et al (2006) A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 79(3):439–448. doi: S0002-9297(07)62743-8 [pii] 10.1086/505915PubMedGoogle Scholar
  52. Filewod NC, Pistolic J, Hancock RE (2009) Low concentrations of LL-37 alter IL-8 production by keratinocytes and bronchial epithelial cells in response to proinflammatory stimuli. FEMS Immunol Med Microbiol 56(3):233–240. doi: FIM571 [pii] 10.1111/j.1574-695X.2009.00571.xPubMedGoogle Scholar
  53. Fischer PM (2003) The design, synthesis and application of stereochemical and directional peptide isomers: a critical review. Curr Protein Pept Sci 4(5):339–356PubMedGoogle Scholar
  54. Fjell CD, Jenssen H, Hilpert K, Cheung WA, Pante N, Hancock RE et al (2009) Identification of novel antibacterial peptides by chemoinformatics and machine learning. J Med Chem 52(7):2006–2015. doi: 10.1021/jm8015365 PubMedGoogle Scholar
  55. Fleming A (2001) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. Bull World Health Organ 79(8):780–790PubMedGoogle Scholar
  56. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770. doi: 10.1038/27376 PubMedGoogle Scholar
  57. Frisullo G, Mirabella M, Angelucci F, Caggiula M, Morosetti R, Sancricca C et al (2007) The effect of disease activity on leptin, leptin receptor and suppressor of cytokine signalling-3 expression in relapsing-remitting multiple sclerosis. J Neuroimmunol 192(1–2):174–183. doi: S0165-5728(07)00295-0 [pii] 10.1016/j.jneuroim.2007.08.008PubMedGoogle Scholar
  58. Fritz JH, Brunner S, Birnstiel ML, Buschle M, Gabain A, Mattner F et al (2004) The artificial antimicrobial peptide KLKLLLLLKLK induces predominantly a TH2-type immune response to co-injected antigens. Vaccine 22(25–26):3274–3284. doi: 10.1016/j.vaccine.2004.03.007 S0264410X0400218X [pii]PubMedGoogle Scholar
  59. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K et al (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276(8):5836–5840. doi: 10.1074/jbc.M007540200 M007540200 [pii]PubMedGoogle Scholar
  60. Gallo RL, Ono M, Povsic T, Page C, Eriksson E, Klagsbrun M et al (1994) Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci USA 91(23):11035–11039PubMedGoogle Scholar
  61. Gallo SA, Wang W, Rawat SS, Jung G, Waring AJ, Cole AM et al (2006) Theta-defensins prevent HIV-1 Env-mediated fusion by binding gp41 and blocking 6-helix bundle formation. J Biol Chem 281(27):18787–18792. doi: M602422200 [pii] 10.1074/jbc.M602422200PubMedGoogle Scholar
  62. Ganz T, Metcalf JA, Gallin JI, Boxer LA, Lehrer RI (1988) Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and “specific” granule deficiency. J Clin Invest 82(2):552–556. doi: 10.1172/JCI113631PubMedGoogle Scholar
  63. Garcia JR, Jaumann F, Schulz S, Krause A, Rodriguez-Jimenez J, Forssmann U et al (2001) Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res 306(2):257–264. doi: 10.1007/s004410100433 PubMedGoogle Scholar
  64. Gomariz RP, Juarranz Y, Abad C, Arranz A, Leceta J, Martinez C (2006) VIP-PACAP system in immunity: new insights for multitarget therapy. Ann N Y Acad Sci 1070:51–74. doi: 1070/1/51 [pii] 10.1196/annals.1317.031PubMedGoogle Scholar
  65. Gombart AF, Borregaard N, Koeffler HP (2005) Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 19(9):1067–1077. doi: 19/9/1067 [pii] 10.1096/fj.04-3284comPubMedGoogle Scholar
  66. Gracia A, Polewicz M, Halperin SA, Hancock RE, Potter AA, Babiuk LA et al (2011) Antibody responses in adult and neonatal BALB/c mice to immunization with novel Bordetella pertussis vaccine formulations. Vaccine 29(8):1595–1604. doi: S0264-410X(10)01856-6 [pii] 10.1016/j.vaccine.2010.12.083PubMedGoogle Scholar
  67. Guani-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Teran LM (2010) Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol 135(1):1–11. doi: S1521-6616(09)00912-7 [pii] 10.1016/j.clim.2009.12.004PubMedGoogle Scholar
  68. Gulay Z, Atay T, Amyes SG (2001) Clonal spread of imipenem-resistant Pseudomonas aeruginosa in the intensive care unit of a Turkish hospital. J Chemother 13(5):546–554PubMedGoogle Scholar
  69. Guo CJ, Tan N, Song L, Douglas SD, Ho WZ (2004) Alpha-defensins inhibit HIV infection of macrophages through upregulation of CC-chemokines. AIDS 18(8):1217–1218. doi: 00002030-200405210-00020 [pii]PubMedGoogle Scholar
  70. Hancock RE (2003) Concerns regarding resistance to self-proteins. Microbiology 149(Pt 12):3343–3344, discussion 3344–3345PubMedGoogle Scholar
  71. Hancock RE, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8(9):402–410. doi: S0966-842X(00)01823-0 [pii]PubMedGoogle Scholar
  72. Hancock RE, Rozek A (2002) Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206(2):143–149. doi: S0378109701004803 [pii]PubMedGoogle Scholar
  73. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557. doi: nbt1267 [pii] 10.1038/nbt1267PubMedGoogle Scholar
  74. Hancock RE, Nijnik A, Philpott DJ (2012) Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 10(4):243–254. doi: nrmicro2745 [pii] 10.1038/nrmicro2745PubMedGoogle Scholar
  75. Hao L, Wang J, Zou Z, Yan G, Dong S, Deng J et al (2009) Transplantation of BMSCs expressing hPDGF-A/hBD2 promotes wound healing in rats with combined radiation-wound injury. Gene Ther 16(1):34–42. doi: gt2008133 [pii] 10.1038/gt.2008.133PubMedGoogle Scholar
  76. Hartshorn KL, White MR, Tecle T, Holmskov U, Crouch EC (2006) Innate defense against influenza A virus: activity of human neutrophil defensins and interactions of defensins with surfactant protein D. J Immunol 176(11):6962–6972. doi: 176/11/6962 [pii]PubMedGoogle Scholar
  77. Heilborn JD, Nilsson MF, Kratz G, Weber G, Sorensen O, Borregaard N et al (2003) The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 120(3):379–389. doi: 12069 [pii] 10.1046/j.1523-1747.2003.12069.xPubMedGoogle Scholar
  78. Hell E, Giske CG, Nelson A, Romling U, Marchini G (2010) Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett Appl Microbiol 50(2):211–215. doi: LAM2778 [pii] 10.1111/j.1472-765X.2009.02778.xPubMedGoogle Scholar
  79. Hilpert K, Volkmer-Engert R, Walter T, Hancock RE (2005) High-throughput generation of small antibacterial peptides with improved activity. Nat Biotechnol 23(8):1008–1012. doi: nbt1113 [pii] 10.1038/nbt1113PubMedGoogle Scholar
  80. Hilpert K, Elliott M, Jenssen H, Kindrachuk J, Fjell CD, Korner J et al (2009) Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16(1):58–69. doi: S1074-5521(08)00453-5 [pii] 10.1016/j.chembiol.2008.11.006PubMedGoogle Scholar
  81. Himmerich H, Sheldrick AJ (2010) TNF-alpha and ghrelin: opposite effects on immune system, metabolism and mental health. Protein Pept Lett 17(2):186–196PubMedGoogle Scholar
  82. Hirsch T, Spielmann M, Zuhaili B, Fossum M, Metzig M, Koehler T et al (2009) Human beta-defensin-3 promotes wound healing in infected diabetic wounds. J Gene Med 11(3):220–228. doi: 10.1002/jgm.1287PubMedGoogle Scholar
  83. Hollox EJ, Armour JA (2008) Directional and balancing selection in human beta-defensins. BMC Evol Biol 8:113. doi: 1471-2148-8-113 [pii] 10.1186/1471-2148-8-113PubMedGoogle Scholar
  84. Hong RW, Shchepetov M, Weiser JN, Axelsen PH (2003) Transcriptional profile of the Escherichia coli response to the antimicrobial insect peptide cecropin A. Antimicrob Agents Chemother 47(1):1–6PubMedGoogle Scholar
  85. Howard JK, Lord GM, Matarese G, Vendetti S, Ghatei MA, Ritter MA et al (1999) Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J Clin Invest 104(8):1051–1059. doi: 10.1172/JCI6762 PubMedGoogle Scholar
  86. Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL, Leung DY (2004) Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J Immunol 172(3):1763–1767PubMedGoogle Scholar
  87. Howell MD, Novak N, Bieber T, Pastore S, Girolomoni G, Boguniewicz M et al (2005) Interleukin-10 downregulates anti-microbial peptide expression in atopic dermatitis. J Invest Dermatol 125(4):738–745. doi: JID23776 [pii] 10.1111/j.0022-202X.2005.23776.xPubMedGoogle Scholar
  88. Howell MD, Boguniewicz M, Pastore S, Novak N, Bieber T, Girolomoni G et al (2006a) Mechanism of HBD-3 deficiency in atopic dermatitis. Clin Immunol 121(3):332–338. doi: S1521-6616(06)00841-2 [pii] 10.1016/j.clim.2006.08.008PubMedGoogle Scholar
  89. Howell MD, Wollenberg A, Gallo RL, Flaig M, Streib JE, Wong C et al (2006b) Cathelicidin deficiency predisposes to eczema herpeticum. J Allergy Clin Immunol 117(4):836–841. doi:S0091-6749(06)00007-8 [pii] 10.1016/j.jaci.2005.12.1345PubMedGoogle Scholar
  90. Hu Q, Zuo P, Shao B, Yang S, Xu G, Lan F et al (2010) Administration of nonviral gene vector encoding rat beta-defensin-2 ameliorates chronic Pseudomonas aeruginosa lung infection in rats. J Gene Med 12(3):276–286. doi: 10.1002/jgm.1435 PubMedGoogle Scholar
  91. Incorporated, I.P (2009) Inimex pharmaceuticals begins first clinical study of an innate defense regulator. Press release from Inimex Pharmaceuticals Inc.Google Scholar
  92. Islam D, Bandholtz L, Nilsson J, Wigzell H, Christensson B, Agerberth B et al (2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7(2):180–185. doi: 10.1038/84627 PubMedGoogle Scholar
  93. Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511. doi:19/3/491 [pii] 10.1128/CMR.00056-05PubMedGoogle Scholar
  94. Jenssen H, Fjell CD, Cherkasov A, Hancock RE (2008) QSAR modeling and computer-aided design of antimicrobial peptides. J Pept Sci 14(1):110–114. doi: 10.1002/psc.908 PubMedGoogle Scholar
  95. Joazlina ZY, Wastie ML, Kamarulzaman A (2005) Kostmann’s syndrome. Clin Imaging 29(5):364–366. doi:S0899-7071(05)00035-5 [pii] 10.1016/j.clinimag.2005.01.031PubMedGoogle Scholar
  96. Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273(6):3718–3724PubMedGoogle Scholar
  97. Jurevic RJ, Bai M, Chadwick RB, White TC, Dale BA (2003) Single-nucleotide polymorphisms (SNPs) in human beta-defensin 1: high-throughput SNP assays and association with Candida carriage in type I diabetics and nondiabetic controls. J Clin Microbiol 41(1):90–96PubMedGoogle Scholar
  98. Katz ML, Mueller LV, Polyakov M, Weinstock SF (2006) Where have all the antibiotic patents gone? Nat Biotechnol 24(12):1529–1531. doi:nbt1206-1529 [pii] 10.1038/nbt1206-1529PubMedGoogle Scholar
  99. Kida Y, Shimizu T, Kuwano K (2006) Sodium butyrate up-regulates cathelicidin gene expression via activator protein-1 and histone acetylation at the promoter region in a human lung epithelial cell line, EBC-1. Mol Immunol 43(12):1972–1981. doi:S0161-5890(05)00412-8 [pii] 10.1016/j.molimm.2005.11.014PubMedGoogle Scholar
  100. Kindrachuk J, Jenssen H, Elliott M, Townsend R, Nijnik A, Lee SF et al (2009) A novel vaccine adjuvant comprised of a synthetic innate defence regulator peptide and CpG oligonucleotide links innate and adaptive immunity. Vaccine 27(34):4662–4671. doi:S0264-410X(09)00782-8 [pii] 10.1016/j.vaccine.2009.05.094PubMedGoogle Scholar
  101. Kindrachuk J, Scruten E, Attah-Poku S, Bell K, Potter A, Babiuk LA et al (2010) Stability, toxicity and biological activity of host defense peptide BMAP28 and its inversed and retro-inversed isomers. Biopolymers. doi:10.1002/bip. 21441Google Scholar
  102. Kisich KO, Carspecken CW, Fieve S, Boguniewicz M, Leung DY (2008) Defective killing of Staphylococcus aureus in atopic dermatitis is associated with reduced mobilization of human beta-defensin-3. J Allergy Clin Immunol 122(1):62–68. doi:S0091-6749(08)00767-7 [pii] 10.1016/j.jaci.2008.04.022PubMedGoogle Scholar
  103. Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T et al (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111(11):1665–1672. doi: 10.1172/JCI17545 PubMedGoogle Scholar
  104. Kollef M, Pittet D, Sanchez Garcia M, Chastre J, Fagon JY, Bonten M et al (2006) A randomized double-blind trial of iseganan in prevention of ventilator-associated pneumonia. Am J Respir Crit Care Med 173(1):91–97. doi:200504-656OC [pii] 10.1164/rccm.200504-656OCPubMedGoogle Scholar
  105. Kondejewski LH, Jelokhani-Niaraki M, Farmer SW, Lix B, Kay CM, Sykes BD et al (1999) Dissociation of antimicrobial and hemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity. J Biol Chem 274(19):13181–13192PubMedGoogle Scholar
  106. Koshlukova SE, Lloyd TL, Araujo MW, Edgerton M (1999) Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem 274(27):18872–18879PubMedGoogle Scholar
  107. Kovacs-Nolan J, Latimer L, Landi A, Jenssen H, Hancock RE, Babiuk LA et al (2009a) The novel adjuvant combination of CpG ODN, indolicidin and polyphosphazene induces potent antibody- and cell-mediated immune responses in mice. Vaccine 27(14):2055–2064. doi:S0264-410X(09)00182-0 [pii] 10.1016/j.vaccine.2009.01.118PubMedGoogle Scholar
  108. Kovacs-Nolan J, Mapletoft JW, Lawman Z, Babiuk LA, van Drunen Littel-van den Hurk S (2009b) Formulation of bovine respiratory syncytial virus fusion protein with CpG oligodeoxynucleotide, cationic host defence peptide and polyphosphazene enhances humoral and cellular responses and induces a protective type 1 immune response in mice. J Gen Virol 90(Pt 8):1892–1905. doi:vir.0.011684-0 [pii] 10.1099/vir.0.011684-0PubMedGoogle Scholar
  109. Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L Jr (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40(10):3016–3026. doi:bi002656a [pii]PubMedGoogle Scholar
  110. Kraus D, Peschel A (2008) Staphylococcus aureus evasion of innate antimicrobial defense. Future Microbiol 3(4):437–451. doi: 10.2217/17460913.3.4.437 PubMedGoogle Scholar
  111. Lago F, Dieguez C, Gomez-Reino J, Gualillo O (2007) Adipokines as emerging mediators of immune response and inflammation. Nat Clin Pract Rheumatol 3(12):716–724. doi:ncprheum0674 [pii] 10.1038/ncprheum0674PubMedGoogle Scholar
  112. Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30(3):131–141. doi:S1471-4906(09)00005-2 [pii] 10.1016/ Scholar
  113. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B et al (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569. doi:nature06116 [pii] 10.1038/nature06116PubMedGoogle Scholar
  114. Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC (1995) Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63(4):1291–1297PubMedGoogle Scholar
  115. Lee PH, Rudisill JA, Lin KH, Zhang L, Harris SM, Falla TJ et al (2004) HB-107, a nonbacteriostatic fragment of the antimicrobial peptide cecropin B, accelerates murine wound repair. Wound Repair Regen 12(3):351–358. doi:10.1111/j.1067-1927.2004.012303.x WRR12303 [pii]PubMedGoogle Scholar
  116. Lee PH, Ohtake T, Zaiou M, Murakami M, Rudisill JA, Lin KH et al (2005) Expression of an additional cathelicidin antimicrobial peptide protects against bacterial skin infection. Proc Natl Acad Sci USA 102(10):3750–3755. doi:0500268102 [pii] 10.1073/pnas.0500268102PubMedGoogle Scholar
  117. Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10(12 Suppl):S122–S129. doi:nm1145 [pii] 10.1038/nm1145PubMedGoogle Scholar
  118. Li J, Post M, Volk R, Gao Y, Li M, Metais C et al (2000) PR39, a peptide regulator of angiogenesis. Nat Med 6(1):49–55. doi: 10.1038/71527 PubMedGoogle Scholar
  119. Li M, Yu DH, Cai H (2008) The synthetic antimicrobial peptide KLKL5KLK enhances the protection and efficacy of the combined DNA vaccine against Mycobacterium tuberculosis. DNA Cell Biol 27(8):405–413. doi: 10.1089/dna.2007.0693 PubMedGoogle Scholar
  120. Lillard JW Jr, Boyaka PN, Chertov O, Oppenheim JJ, McGhee JR (1999) Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc Natl Acad Sci USA 96(2):651–656PubMedGoogle Scholar
  121. Linzmeier RM, Ganz T (2005) Human defensin gene copy number polymorphisms: comprehensive analysis of independent variation in alpha- and beta-defensin regions at 8p22-p23. Genomics 86(4):423–430. doi:S0888-7543(05)00157-6 [pii] 10.1016/j.ygeno.2005.06.003PubMedGoogle Scholar
  122. Lipsky BA, Holroyd KJ, Zasloff M (2008) Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin Infect Dis 47(12):1537–1545. doi: 10.1086/593185 PubMedGoogle Scholar
  123. Liu HY, Collins QF, Moukdar F, Zhuo D, Han J, Hong T et al (2008) Suppression of hepatic glucose production by human neutrophil alpha-defensins through a signaling pathway distinct from insulin. J Biol Chem 283(18):12056–12063. doi:M801033200 [pii] 10.1074/jbc.M801033200PubMedGoogle Scholar
  124. Ma HL, Liang S, Li J, Napierata L, Brown T, Benoit S et al (2008) IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest 118(2):597–607. doi: 10.1172/JCI33263 PubMedGoogle Scholar
  125. Mader JS, Ewen C, Hancock RE, Bleackley RC (2011a) The human cathelicidin, LL-37, induces granzyme-mediated apoptosis in regulatory T cells. J Immunother 34(3):229–235. doi: 10.1097/CJI.0b013e318207ecdf PubMedGoogle Scholar
  126. Mader JS, Marcet-Palacios M, Hancock RE, Bleackley RC (2011b) The human cathelicidin, LL-37, induces granzyme-mediated apoptosis in cytotoxic T lymphocytes. Exp Cell Res 317(4):531–538. doi:S0014-4827(10)00544-6 [pii] 10.1016/j.yexcr.2010.11.015PubMedGoogle Scholar
  127. Maisetta G, Di Luca M, Esin S, Florio W, Brancatisano FL, Bottai D et al (2008) Evaluation of the inhibitory effects of human serum components on bactericidal activity of human beta defensin 3. Peptides 29(1):1–6. doi:S0196-9781(07)00425-1 [pii] 10.1016/j.peptides.2007.10.013PubMedGoogle Scholar
  128. Malyszko J, Mysliwiec M (2007) Hepcidin in anemia and inflammation in chronic kidney disease. Kidney Blood Press Res 30(1):15–30. doi:000098522 [pii] 10.1159/000098522PubMedGoogle Scholar
  129. Marks DJ, Harbord MW, MacAllister R, Rahman FZ, Young J, Al-Lazikani B et al (2006) Defective acute inflammation in Crohn’s disease: a clinical investigation. Lancet 367(9511):668–678. doi:S0140-6736(06)68265-2 [pii] 10.1016/S0140-6736(06)68265-2PubMedGoogle Scholar
  130. Martinez A, Weaver C, Lopez J, Bhathena SJ, Elsasser TH, Miller MJ et al (1996) Regulation of insulin secretion and blood glucose metabolism by adrenomedullin. Endocrinology 137(6):2626–2632PubMedGoogle Scholar
  131. Matarese G, La Cava A (2004) The intricate interface between immune system and metabolism. Trends Immunol 25(4):193–200. doi:10.1016/ S1471490604000596 [pii]PubMedGoogle Scholar
  132. Mayer ML, Easton DM, Hancock REW (2010) Fine tuning host responses in the face of infection: emerging roles and clinical applications of host defence peptides. In: Wang G (ed) Antimicrobial peptides: discovery, design and novel therapeutic strategies, 2010. CABI, Oxfordshire. ISBN 9781845936570Google Scholar
  133. McGwire BS, Kulkarni MM (2010) Interactions of antimicrobial peptides with Leishmania and trypanosomes and their functional role in host parasitism. Exp Parasitol 126(3):397–405. doi:S0014-4894(10)00061-5 [pii] 10.1016/j.exppara.2010.02.006PubMedGoogle Scholar
  134. McGwire BS, Olson CL, Tack BF, Engman DM (2003) Killing of African trypanosomes by antimicrobial peptides. J Infect Dis 188(1):146–152. doi:JID30556 [pii] 10.1086/375747PubMedGoogle Scholar
  135. Milanese M, Segat L, Arraes LC, Garzino-Demo A, Crovella S (2009) Copy number variation of defensin genes and HIV infection in Brazilian children. J Acquir Immune Defic Syndr 50(3):331–333. doi: 10.1097/QAI.0b013e3181945f39 PubMedGoogle Scholar
  136. Moody TW, Ito T, Osefo N, Jensen RT (2011) VIP and PACAP: recent insights into their functions/roles in physiology and disease from molecular and genetic studies. Curr Opin Endocrinol Diabetes Obes 18(1):61–67. doi: 10.1097/MED.0b013e328342568a PubMedGoogle Scholar
  137. Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K et al (2006) Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 176(4):2455–2464. doi:176/4/2455 [pii]PubMedGoogle Scholar
  138. Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen CP, Ludvigsen S et al (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437(7061):975–980. doi:nature04051 [pii] 10.1038/nature04051PubMedGoogle Scholar
  139. Nagaoka I, Hirota S, Niyonsaba F, Hirata M, Adachi Y, Tamura H et al (2001) Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells. J Immunol 167(6):3329–3338PubMedGoogle Scholar
  140. Nagaoka I, Hirota S, Niyonsaba F, Hirata M, Adachi Y, Tamura H et al (2002) Augmentation of the lipopolysaccharide-neutralizing activities of human cathelicidin CAP18/LL-37-derived antimicrobial peptides by replacement with hydrophobic and cationic amino acid residues. Clin Diagn Lab Immunol 9(5):972–982PubMedGoogle Scholar
  141. Nagaoka I, Tamura H, Hirata M (2006) An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7. J Immunol 176(5):3044–3052. doi:176/5/3044 [pii]PubMedGoogle Scholar
  142. Nagaoka I, Niyonsaba F, Tsutsumi-Ishii Y, Tamura H, Hirata M (2008) Evaluation of the effect of human beta-defensins on neutrophil apoptosis. Int Immunol 20(4):543–553. doi:dxn012 [pii] 10.1093/intimm/dxn012PubMedGoogle Scholar
  143. Nagaoka I, Suzuki K, Murakami T, Niyonsaba F, Tamura H, Hirata M (2010) Evaluation of the effect of alpha-defensin human neutrophil peptides on neutrophil apoptosis. Int J Mol Med 26(6):925–934PubMedGoogle Scholar
  144. Nathan C (2004) Antibiotics at the crossroads. Nature 431(7011):899–902. doi:431899a [pii] 10.1038/431899aPubMedGoogle Scholar
  145. Nijnik A, Madera L, Ma S, Waldbrook M, Elliott MR, Easton DM et al (2010) Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. J Immunol 184(5):2539–2550. doi:jimmunol.0901813 [pii] 10.4049/jimmunol.0901813PubMedGoogle Scholar
  146. Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K et al (2007) Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 127(3):594–604. doi:5700599 [pii] 10.1038/sj.jid.5700599PubMedGoogle Scholar
  147. Nizet V (2006) Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol 8(1):11–26PubMedGoogle Scholar
  148. Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA et al (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414(6862):454–457. doi:10.1038/35106587 35106587 [pii]PubMedGoogle Scholar
  149. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF et al (2003) Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 171(6):3262–3269PubMedGoogle Scholar
  150. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T et al (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347(15):1151–1160. doi:10.1056/NEJMoa021481 347/15/1151 [pii]PubMedGoogle Scholar
  151. Oren Z, Shai Y (1997) Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Biochemistry 36(7):1826–1835. doi:10.1021/bi962507l bi962507l [pii]PubMedGoogle Scholar
  152. Oren Z, Hong J, Shai Y (1997) A repertoire of novel antibacterial diastereomeric peptides with selective cytolytic activity. J Biol Chem 272(23):14643–14649PubMedGoogle Scholar
  153. Otte JM, Werner I, Brand S, Chromik AM, Schmitz F, Kleine M et al (2008) Human beta defensin 2 promotes intestinal wound healing in vitro. J Cell Biochem 104(6):2286–2297. doi: 10.1002/jcb.21787 PubMedGoogle Scholar
  154. Ottenhoff TH, Doherty TM, van Dissel JT, Bang P, Lingnau K, Kromann I et al (2010) First in humans: a new molecularly defined vaccine shows excellent safety and strong induction of long-lived Mycobacterium tuberculosis-specific Th1-cell like responses. Hum Vaccin 6(12):1007–1015. doi:13143 [pii]PubMedGoogle Scholar
  155. Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11(2):85–97. doi:nri2921 [pii] 10.1038/nri2921PubMedGoogle Scholar
  156. Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76(9):4176–4182. doi:10.1128/IAI.00318-08 IAI.00318-08 [pii]PubMedGoogle Scholar
  157. Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE (2002) Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46(3):605–614PubMedGoogle Scholar
  158. Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J (2006) Human beta-defensins. Cell Mol Life Sci 63(11):1294–1313. doi: 10.1007/s00018-005-5540-2 PubMedGoogle Scholar
  159. Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4(7):529–536. doi:nrmicro1441 [pii] 10.1038/nrmicro1441PubMedGoogle Scholar
  160. Peters BM, Zhu J, Fidel PL Jr, Scheper MA, Hackett W, El Shaye S et al (2010) Protection of the oral mucosa by salivary histatin-5 against Candida albicans in an ex vivo murine model of oral infection. FEMS Yeast Res 10(5):597–604. doi:FYR632 [pii] 10.1111/j.1567-1364.2010.00632.xPubMedGoogle Scholar
  161. Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL et al (2005) HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest 115(7):1806–1815. doi: 10.1172/JCI23865 PubMedGoogle Scholar
  162. Peyssonnaux C, Boutin AT, Zinkernagel AS, Datta V, Nizet V, Johnson RS (2008) Critical role of HIF-1alpha in keratinocyte defense against bacterial infection. J Invest Dermatol 128(8):1964–1968. doi:jid200827 [pii] 10.1038/jid.2008.27PubMedGoogle Scholar
  163. Pini A, Falciani C, Mantengoli E, Bindi S, Brunetti J, Iozzi S et al (2010) A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo. FASEB J 24(4):1015–1022. doi:fj.09-145474 [pii] 10.1096/fj.09-145474PubMedGoogle Scholar
  164. Powers JP, Hancock RE (2003) The relationship between peptide structure and antibacterial activity. Peptides 24(11):1681–1691. doi:10.1016/j.peptides.2003.08.023 S0196978103003425 [pii]PubMedGoogle Scholar
  165. Putsep K, Carlsson G, Boman HG, Andersson M (2002) Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360(9340):1144–1149. doi:S0140-6736(02)11201-3 [pii] 10.1016/S0140-6736(02)11201-3PubMedGoogle Scholar
  166. Radek KA, Elias PM, Taupenot L, Mahata SK, O’Connor DT, Gallo RL (2010) Neuroendocrine nicotinic receptor activation increases susceptibility to bacterial infections by suppressing antimicrobial peptide production. Cell Host Microbe 7(4):277–289. doi:S1931-3128(10)00106-X [pii] 10.1016/j.chom.2010.03.009PubMedGoogle Scholar
  167. Ramanathan B, Davis EG, Ross CR, Blecha F (2002) Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes Infect 4(3):361–372. doi:S1286457902015496 [pii]PubMedGoogle Scholar
  168. Rieg S, Steffen H, Seeber S, Humeny A, Kalbacher H, Dietz K et al (2005) Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J Immunol 174(12):8003–8010. doi:174/12/8003 [pii]PubMedGoogle Scholar
  169. Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ et al (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321(5897):1837–1841. doi:321/5897/1837 [pii] 10.1126/science.1163600PubMedGoogle Scholar
  170. Sawa T, Kurahashi K, Ohara M, Gropper MA, Doshi V, Larrick JW et al (1998) Evaluation of antimicrobial and lipopolysaccharide-neutralizing effects of a synthetic CAP18 fragment against Pseudomonas aeruginosa in a mouse model. Antimicrob Agents Chemother 42(12):3269–3275PubMedGoogle Scholar
  171. Schauber J, Iffland K, Frisch S, Kudlich T, Schmausser B, Eck M et al (2004) Histone-deacetylase inhibitors induce the cathelicidin LL-37 in gastrointestinal cells. Mol Immunol 41(9):847–854. doi:10.1016/j.molimm.2004.05.005 S0161589004001610 [pii]PubMedGoogle Scholar
  172. Schauber J, Rieger D, Weiler F, Wehkamp J, Eck M, Fellermann K et al (2006) Heterogeneous expression of human cathelicidin hCAP18/LL-37 in inflammatory bowel diseases. Eur J Gastroenterol Hepatol 18(6):615–621. doi:00042737-200606000-00007 [pii]PubMedGoogle Scholar
  173. Schauber J, Oda Y, Buchau AS, Yun QC, Steinmeyer A, Zugel U et al (2008) Histone acetylation in keratinocytes enables control of the expression of cathelicidin and CD14 by 1,25-dihydroxyvitamin D3. J Invest Dermatol 128(4):816–824. doi:5701102 [pii] 10.1038/sj.jid.5701102PubMedGoogle Scholar
  174. Schell DA, Vari RC, Samson WK (1996) Adrenomedullin: a newly discovered hormone controlling fluid and electrolyte homeostasis. Trends Endocrinol Metab 7(1):7–13. doi:1043-2760(95)00181-6 [pii]PubMedGoogle Scholar
  175. Scheller A, Oehlke J, Wiesner B, Dathe M, Krause E, Beyermann M et al (1999) Structural requirements for cellular uptake of alpha-helical amphipathic peptides. J Pept Sci 5(4):185–194. doi:10.1002/(SICI)1099-1387(199904)5:4<185::AID-PSC184>3.0.CO;2-9PubMedGoogle Scholar
  176. Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 169(7):3883–3891PubMedGoogle Scholar
  177. Scott MG, Dullaghan E, Mookherjee N, Glavas N, Waldbrook M, Thompson A et al (2007) An anti-infective peptide that selectively modulates the innate immune response. Nat Biotechnol 25(4):465–472. doi:nbt1288 [pii] 10.1038/nbt1288PubMedGoogle Scholar
  178. Scruten E, Kovacs-Nolan J, Griebel PJ, Latimer L, Kindrachuk J, Potter A et al (2010) Retro-inversion enhances the adjuvant and CpG co-adjuvant activity of host defence peptide Bac2A. Vaccine 28(17):2945–2956. doi:S0264-410X(10)00183-0 [pii] 10.1016/j.vaccine.2010.02.015PubMedGoogle Scholar
  179. Sellers LJ (2003) “Big pharma bails on anti-infectives research.” Pharmaceutical Executive. Advanstar Communications Inc. From HighBeam Research Accessed 30 Oct 2012
  180. Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6(6):551–557. doi:ni1206 [pii] 10.1038/ni1206PubMedGoogle Scholar
  181. Siegrist CA (2001) Neonatal and early life vaccinology. Vaccine 19(25–26):3331–3346. doi:S0264410X01000287 [pii]PubMedGoogle Scholar
  182. Siegrist CA (2007) The challenges of vaccine responses in early life: selected examples. J Comp Pathol 137(Suppl 1):S4–S9. doi:S0021-9975(07)00052-7 [pii] 10.1016/j.jcpa.2007.04.004PubMedGoogle Scholar
  183. Smalley SG, Barrow PA, Foster N (2009) Immunomodulation of innate immune responses by vasoactive intestinal peptide (VIP): its therapeutic potential in inflammatory disease. Clin Exp Immunol 157(2):225–234. doi:CEI3956 [pii] 10.1111/j.1365-2249.2009.03956.xPubMedGoogle Scholar
  184. Soehnlein O, Zernecke A, Eriksson EE, Rothfuchs AG, Pham CT, Herwald H et al (2008) Neutrophil secretion products pave the way for inflammatory monocytes. Blood 112(4):1461–1471. doi:blood-2008-02-139634 [pii] 10.1182/blood-2008-02-139634PubMedGoogle Scholar
  185. Sorensen O, Bratt T, Johnsen AH, Madsen MT, Borregaard N (1999) The human antibacterial cathelicidin, hCAP-18, is bound to lipoproteins in plasma. J Biol Chem 274(32):22445–22451PubMedGoogle Scholar
  186. Spellberg B (2010) Antibiotic resistance: promoting critically needed antibiotic research and development and appropriate use (“Stewardship”) of these precious drugs, House Committee on Energy and Commerce Subcommittee on health. Testimony of the Infectious Diseases Society of America (IDSA), Wilson Boulevard Arlington, VA, pp 1–26Google Scholar
  187. Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP, Davis GJ et al (2010) Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med 2(29):29ra31. doi:2/29/29ra31 [pii] 10.1126/scitranslmed.3000928PubMedGoogle Scholar
  188. Straub RH, Cutolo M, Buttgereit F, Pongratz G (2010) Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med 267(6):543–560. doi:JIM2218 [pii] 10.1111/j.1365-2796.2010.02218.xPubMedGoogle Scholar
  189. Suzuki K, Murakami T, Kuwahara-Arai K, Tamura H, Hiramatsu K, Nagaoka I (2011) Human anti-microbial cathelicidin peptide LL-37 suppresses the LPS-induced apoptosis of endothelial cells. Int Immunol 23(3):185–193. doi:dxq471 [pii] 10.1093/intimm/dxq471PubMedGoogle Scholar
  190. Tanaka T, Rahman MM, Battur B, Boldbaatar D, Liao M, Umemiya-Shirafuji R et al (2010) Parasiticidal activity of human alpha-defensin-5 against Toxoplasma gondii. In Vitro Cell Dev Biol Anim 46(6):560–565. doi: 10.1007/s11626-009-9271-9 PubMedGoogle Scholar
  191. Tecle T, White MR, Gantz D, Crouch EC, Hartshorn KL (2007) Human neutrophil defensins increase neutrophil uptake of influenza A virus and bacteria and modify virus-induced respiratory burst responses. J Immunol 178(12):8046–8052. doi:178/12/8046 [pii]PubMedGoogle Scholar
  192. Territo MC, Ganz T, Selsted ME, Lehrer R (1989) Monocyte-chemotactic activity of defensins from human neutrophils. J Clin Invest 84(6):2017–2020. doi: 10.1172/JCI114394 PubMedGoogle Scholar
  193. Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y et al (2005) Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 175(7):4662–4668. doi:175/7/4662 [pii]PubMedGoogle Scholar
  194. Torres SR, Garzino-Demo A, Meiller TF, Meeks V, Jabra-Rizk MA (2009) Salivary histatin-5 and oral fungal colonisation in HIV+ individuals. Mycoses 52(1):11–15. doi:MYC1602 [pii] 10.1111/j.1439-0507.2008.01602.xPubMedGoogle Scholar
  195. Travis S, Yap LM, Hawkey C, Warren B, Lazarov M, Fong T et al (2005) RDP58 is a novel and potentially effective oral therapy for ulcerative colitis. Inflamm Bowel Dis 11(8):713–719. doi:00054725-200508000-00002 [pii]PubMedGoogle Scholar
  196. Tuluc F, Lai JP, Kilpatrick LE, Evans DL, Douglas SD (2009) Neurokinin 1 receptor isoforms and the control of innate immunity. Trends Immunol 30(6):271–276. doi:S1471-4906(09)00081-7 [pii] 10.1016/ Scholar
  197. Valore EV, Ganz T (1992) Posttranslational processing of defensins in immature human myeloid cells. Blood 79(6):1538–1544PubMedGoogle Scholar
  198. van der Does AM, Bogaards SJ, Ravensbergen B, Beekhuizen H, van Dissel JT, Nibbering PH (2009) Antimicrobial peptide hLF1-11 directs granulocyte-macrophage colony-stimulating factor-driven monocyte differentiation toward macrophages with enhanced recognition and clearance of pathogens. Antimicrob Agents Chemother 54(2):811–816. doi:AAC.00652-09 [pii] 10.1128/AAC.00652-09PubMedGoogle Scholar
  199. van Dissel JT, Arend SM, Prins C, Bang P, Tingskov PN, Lingnau K et al (2010) Ag85B-ESAT-6 adjuvanted with IC31 promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naive human volunteers. Vaccine 28(20):3571–3581. doi:S0264-410X(10)00290-2 [pii] 10.1016/j.vaccine.2010.02.094PubMedGoogle Scholar
  200. Velden WJ, van Iersel TM, Blijlevens NM, Donnelly JP (2009) Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11). BMC Med 7:44. doi:1741-7015-7-44 [pii] 10.1186/1741-7015-7-44PubMedGoogle Scholar
  201. Vongsa RA, Zimmerman NP, Dwinell MB (2009) CCR6 regulation of the actin cytoskeleton orchestrates human beta defensin-2- and CCL20-mediated restitution of colonic epithelial cells. J Biol Chem 284(15):10034–10045. doi:M805289200 [pii] 10.1074/jbc.M805289200PubMedGoogle Scholar
  202. Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J et al (2004a) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173(5):2909–2912. doi:173/5/2909 [pii]PubMedGoogle Scholar
  203. Wang W, Owen SM, Rudolph DL, Cole AM, Hong T, Waring AJ et al (2004b) Activity of alpha- and theta-defensins against primary isolates of HIV-1. J Immunol 173(1):515–520PubMedGoogle Scholar
  204. Welling MM, Hiemstra PS, van den Barselaar MT, Paulusma-Annema A, Nibbering PH, Pauwels EK et al (1998) Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation. J Clin Invest 102(8):1583–1590. doi: 10.1172/JCI3664 PubMedGoogle Scholar
  205. Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL et al (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286(5437):113–117. doi:7854 [pii]PubMedGoogle Scholar
  206. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD et al (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8(9):950–957. doi:ni1497 [pii] 10.1038/ni1497PubMedGoogle Scholar
  207. Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A et al (2007) Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 13(8):975–980. doi:nm1616 [pii] 10.1038/nm1616PubMedGoogle Scholar
  208. Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23(6):291–296. doi:S1471490602022469 [pii]PubMedGoogle Scholar
  209. Yin J, Xu K, Zhang J, Kumar A, Yu FS (2007) Wound-induced ATP release and EGF receptor activation in epithelial cells. J Cell Sci 120(Pt 5):815–825. doi:jcs.03389 [pii] 10.1242/jcs.03389PubMedGoogle Scholar
  210. Yu J, Mookherjee N, Wee K, Bowdish DM, Pistolic J, Li Y et al (2007) Host defense peptide LL-37, in synergy with inflammatory mediator IL-1beta, augments immune responses by multiple pathways. J Immunol 179(11):7684–7691. doi:179/11/7684 [pii]PubMedGoogle Scholar
  211. Zanetti M, Gennaro R, Scocchi M, Skerlavaj B (2000) Structure and biology of cathelicidins. Adv Exp Med Biol 479:203–218. doi: 10.1007/0-306-46831-X_17 PubMedGoogle Scholar
  212. Zhang Z, Shively JE (2010) Generation of novel bone forming cells (monoosteophils) from the cathelicidin-derived peptide LL-37 treated monocytes. PLoS One 5(11):e13985. doi: 10.1371/journal.pone.0013985 PubMedGoogle Scholar
  213. Zhang L, Scott MG, Yan H, Mayer LD, Hancock RE (2000) Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers. Biochemistry 39(47):14504–14514. doi:bi0011173 [pii]PubMedGoogle Scholar
  214. Zheng Y, Niyonsaba F, Ushio H, Nagaoka I, Ikeda S, Okumura K et al (2007) Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils. Br J Dermatol 157(6):1124–1131. doi:BJD8196 [pii] 10.1111/j.1365-2133.2007.08196.xPubMedGoogle Scholar
  215. Zilbauer M, Jenke A, Wenzel G, Postberg J, Heusch A, Phillips AD et al (2010) Expression of human beta-defensins in children with chronic inflammatory bowel disease. PLoS One 5(10):e15389. doi: 10.1371/journal.pone.0015389 PubMedGoogle Scholar
  216. Zughaier SM, Shafer WM, Stephens DS (2005) Antimicrobial peptides and endotoxin inhibit cytokine and nitric oxide release but amplify respiratory burst response in human and murine macrophages. Cell Microbiol 7(9):1251–1262. doi:CMI549 [pii] 10.1111/j.1462-5822.2005.00549.xPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2013

Authors and Affiliations

  • Nicole J. Afacan
    • 1
  • Laure M. Janot
    • 1
  • Robert E. W. Hancock
    • 1
  1. 1.Centre for Microbial Diseases and Immunity ResearchUniversity of British ColumbiaVancouverCanada

Personalised recommendations