Skip to main content

Pseudodifferential Operators on Variable Lebesgue Spaces

  • Chapter
  • First Online:

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 228))

Abstract

Let \( \mathcal{M}(\mathbb{R}^n) \)be the class of bounded away from one and infinity functions \( p : \mathbb{R}^n \rightarrow [1,\infty] \) such that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue space \( L^{p(.)}(\mathbb{R}^{(n)}\). We show that if a belongs to the Hörmander class \( S ^{n(\rho-1)}_{\rho\delta}\) with \( 0 < \rho \leq 1, 0 \leq \delta < 1 \) 1, then the pseudodifferential operator Opa is bounded on \( L^{p(.)}{(\mathbb{R}^n)}\) provided that \( p\in \mathcal{M}{(\mathbb{R}^n)}\). Let \( \mathcal{M}*{(\mathbb{R}^n)}\) be the class of variable exponents \( p\in \mathcal{M}{(\mathbb{R}^n)}\) represented as \( {\raise0.7ex\hbox{$1$} \!\mathord{\left/{\vphantom {1 {p(x)}}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${p(x)}$}}\) \( {\raise0.7ex\hbox{$\theta $} \!\mathord{\left/{\vphantom {\theta {po}}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${po}$}} + {\raise0.7ex\hbox{${(1 - 0)}$} \!\mathord{\left/{\vphantom {{(1 -0)}{p1}}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{${p1}$}}(x) {\rm where \, po} \in (1,\infty),(\theta)\in (0,1) \rm {and}p\in \mathcal{M}{(\mathbb{R}^n)}.\rm {We prove that if} a \in s^{0}_{1,0}\) \( {\lim}\kern-\nulldelimiterspace\!\lower0.7ex\hbox{${po}$} + {\raise0.7ex\hbox{${(1 - 0)}$} \!\mathord{\left/{\vphantom {{(1 - 0)} {p1}}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{${p1}$}}(x) {\rm where \, po} \in (1,\infty),(\theta)\in (0,1) \rm {and} p\in \mathcal{M}{(\mathbb{R}^n)}.\rm {We prove that if} a \in s^{0}_{1,0}\) slowly oscillates at infinity in the first variable, then the condition \(\lim_{R} \rightarrow \infty \rm{inf}_{|x|+|\xi|\geq|R}{a(x,\xi|)}>0\) is sufficient for the Fredholmness of Op(A) on \( p\in \mathcal{M}{(\mathbb{R}^n)}\) \( L^{p(.)}{(\mathbb{R}^n)}\) whenever Opa \( L^{p(.)}{(\mathbb{R}^n)}\) Both theorems generalize pioneering results by Rabinovich and Samko [24] obtained for globally log-Hölder continuous exponents p constituting a proper subset of \( p\in \mathcal{M}{(\mathbb{R}^n)}\)

To Professor Vladimir Rabinovich on the occasion of his 70th birthday

Mathematics Subject Classification (2010). Primary 47G30; Secondary 42B25, 46E30.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. ´ Alvarez and J. Hounie, Estimates for the kernel and continuity properties of pseudo-differential operators. Ark. Mat. 28 (1990), 1–22.

    Google Scholar 

  2. J. ´ Alvarez and C. P´erez, Estimates withweights for various singular integral operators. Boll. Un. Mat. Ital. A (7) 8 (1994), 123–133.

    Google Scholar 

  3. C. Capone, D. Cruz-Uribe, and A. Fiorenza, The fractional maximal operator and fractional integrals on variable spaces. Rev. Mat. Iberoamericana 23 (2007), 743–770.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Cobos, T. K¨uhn, and T. Schonbek, One-sided compactness results for Aronszajn- Gagliardo functors. J. Funct. Analysis 106 (1992), 274–313.

    Google Scholar 

  5. D. Cruz-Uribe, A. Fiorenza, and C.J. Neugebauer, The maximal function on variable spaces. Ann. Acad. Sci. Fenn. Math. 28 (2003), 223–238.

    MathSciNet  MATH  Google Scholar 

  6. D. Cruz-Uribe, A. Fiorenza, and C.J. Neugebauer, Corrections to: “The maximal function on variable spaces”. Ann. Acad. Sci. Fenn. Math. 29 (2004), 247–249.

    MathSciNet  MATH  Google Scholar 

  7. L. Diening, Maximal function on generalized Lebesgue spaces(). Math. Inequal. Appl. 7 (2004), 245–253.

    MathSciNet  MATH  Google Scholar 

  8. L. D iening, Maximal function on Musielak-Orlicz spaces and generlaized Lebesgue spaces. Bull. Sci. Math. 129 (2005), 657–700.

    Google Scholar 

  9. L. Diening, Private communication, 29th of October, 2011.

    Google Scholar 

  10. L. Diening, P. Harjulehto, P. H¨ast¨o, and M. R˚uˇziˇcka, Lebesgue and SobolevSp aces with Variable Exponents. Lecture Notes in Mathematics 2017, 2011.

    Google Scholar 

  11. L. Dieinig and M. R˚uˇziˇcka, Calder´on-Zygmund operators on generalized Lebesgue spaces() and problems related to fluid dynamics. J. Reine Angew. Math., 563

    Google Scholar 

  12. (2003), 197–220.

    Google Scholar 

  13. V.V. Grushin, Pseudodifferential operators onwith bounded symbols. Funct. Anal. Appl. 4 (1970), 202–212.

    Article  MATH  Google Scholar 

  14. L. H¨ormander, Pseudo-differential operators and hypoelliptic equations. In: “Singular integrals (Proc. Sympos. Pure Math., Vol. X, Chicago, Ill., 1966)”, pp. 138–183. Amer. Math. Soc., Providence, R.I., 1967.

    Google Scholar 

  15. A.Yu. Karlovich and I.M. Spitkovsky, On an interesting class of variable exponents, arXiv:1110.0299v1.

    Google Scholar 

  16. O. Kov´aˇcik and J. R´akosn´ık, On spaces and. Czechoslovak Math. J. 41(116) (1991), no. 4, 592–618.

    Google Scholar 

  17. A.K. Lerner, Some remarks on the Hardy-Littlewood maximal function on variable spaces. Math. Z. 251 (2005), no. 3, 509–521.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Michalowski, D. Rule, and W. Staubach, Weighted boundedness of pseudodifferential operators and applications. Canad. Math. Bull. 55 (2012), 555–570.

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Miller, Weighted Sobolevsp aces and pseudodifferential operators with smooth symbols. Trans. Amer. Math. Soc. 269 (1982), 91–109.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Nekvinda, Hardy-Littlewood maximal operator on(ℝ).Math. Inequal. Appl. 7 (2004), 255–265.

    MathSciNet  MATH  Google Scholar 

  21. A. Nekvinda, Maximal operator on variable Lebesgue spaces for almost monotone radial exponent. J. Math. Anal. Appl. 337 (2008), 1345–1365.

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Pick and M. R˚uˇziˇcka, An example of a space of Lp(x) on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math. 19 (2001), 369–371.

    Google Scholar 

  23. V.S. Rabinovich, An itroductory course on pseudodifferential operators. Textos de Matem´atica, Instituto Superior T´ecnico, Lisboa, 1998.

    Google Scholar 

  24. V.S. Rabinovich, S. Roch, and B. Silbermann, Limit Operators and Their Applications in Operator Theory. Operator Theory: Advances and Applications, vol. 150. Birkh¨auser, Basel, 2004.

    Google Scholar 

  25. V.S. Rabinovich and S.G. Samko, Boundedness and Fredholmness of pseudodifferential operators in variable exponent spaces. Integral Equations Operator Theory 60 (2008), 507–537.

    Article  MathSciNet  MATH  Google Scholar 

  26. V.S. Rabinovich and S.G. Samko, Pseudodifferential operators approach to singular integral operators in weighted variable exponent Lebesgue spaces on Carleson curves. Integral Equations Operator Theory 69 (2011), 405–444.

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Uinversity Press, Princeton, NJ, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Yu. Karlovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Karlovich, A.Y., Spitkovsky, I.M. (2013). Pseudodifferential Operators on Variable Lebesgue Spaces. In: Karlovich, Y., Rodino, L., Silbermann, B., Spitkovsky, I. (eds) Operator Theory, Pseudo-Differential Equations, and Mathematical Physics. Operator Theory: Advances and Applications, vol 228. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0537-7_9

Download citation

Publish with us

Policies and ethics