New Types of Solutions of Non-linear Fractional Differential Equations

  • Mark Edelman
  • Laura Anna Taieb
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 229)


Using the Riemann-Liouville and Caputo Fractional Standard Maps (FSM) and the Fractional Dissipative Standard Map (FDSM) as examples, we investigate types of solutions of non-linear fractional differential equations. They include periodic sinks, attracting slow diverging trajectories (ASDT), attracting accelerator mode trajectories (AMT), chaotic attractors, and cascade of bifurcations type trajectories (CBTT). New features discovered include attractors which overlap, trajectories which intersect, and CBTTs.


Discrete map attractor fractional dynamical system map with memory stability. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V.E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, HEP, 2011.Google Scholar
  2. [2]
    V.E. Tarasov, Theoretical Physics Models with Integro-Differentiation of Fractional Order. IKI, RCD, 2011 (in Russian).Google Scholar
  3. [3]
    R. Herrmann, Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore, 2011.Google Scholar
  4. [4]
    R. Caponetto, G. Dongola, and L. Fortuna, Fractional Order Systems: Modeling and Control Applications (World Scientific Series on Nonlinear Science Series a). World Scientific, 2010.Google Scholar
  5. [5]
    I. Petras, Fractional-Order Nonlinear Systems. Springer, 2011.Google Scholar
  6. [6]
    F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London, 2010.Google Scholar
  7. [7]
    A.C.J. Luo and V. Afraimovich (eds.), Long-range Interaction, Stochasticity and Fractional Dynamics. Springer, 2010.Google Scholar
  8. [8]
    G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford, 2005.Google Scholar
  9. [9]
    N. Laskin, G.M. Zaslavsky, Nonlinear fractional dynamics on a lattice with longrange interactions. Physica A 368 (2006), 38–4.CrossRefGoogle Scholar
  10. [10]
    V.E. Tarasov, G.M. Zaslavsky, Fractional dynamics of coupled oscillators with longrange interaction. Chaos 16 (2006), 023110.MathSciNetCrossRefGoogle Scholar
  11. [11]
    N. Korabel, G.M. Zaslavsky, Transition to chaos in discrete nonlinear Schr¨odinger equation with long-range interaction. Physica A 378 (2007), 223–237.CrossRefGoogle Scholar
  12. [12]
    G.M. Zaslavsky, M. Edelman, V.E. Tarasov, Dynamics of the chain of forced oscillators with long-range interaction: From synchronization to chaos. Chaos 17 (2007), 043124.MathSciNetCrossRefGoogle Scholar
  13. [13]
    V.E. Tarasov, G.M. Zaslavsky, Fractional dynamics of systems with long-range space interaction and temporal memory. Physica A 383 (2007), 291–308.CrossRefGoogle Scholar
  14. [14]
    I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999.Google Scholar
  15. [15]
    R.R. Nigmatullin, Fractional integral and its physical interpretation. Theoretical and Mathematical Physics 90 (1992), 242–251.MathSciNetCrossRefGoogle Scholar
  16. [16]
    F.Y. Ren, Z.G. Yu, J. Zhou, A. Le Mehaute, R.R. Nigmatullin, The relationship between the fractional integral and the fractal structure of a memory set. Physica A 246 (1997), 419–429.CrossRefGoogle Scholar
  17. [17]
    W.Y. Qiu, J. Lu, Fractional integrals and fractal structure of memory sets. Phys. Lett. A 272 (2000), 353 358.Google Scholar
  18. [18]
    R.R. Nigmatullin, Fractional kinetic equations and ‘universal’ decoupling of a memory function in mesoscale region. Physica A 363 (2006), 282–298.CrossRefGoogle Scholar
  19. [19]
    V.E. Tarasov, G.M. Zaslavsky Fractional dynamics of systems with long-range space interaction and temporal memory. Physica A 383 (2007), 291–308.CrossRefGoogle Scholar
  20. [20]
    A. Carpinteri, F. Mainardi, (eds.), Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien, 1997.Google Scholar
  21. [21]
    B.N. Lundstrom, A.L. Fairhall, M. Maravall, Multiple time scale encoding of slowly varying whisker stimulus envelope in cortical and thalamic neurons in vivo. J. Neuroscience, 30 (2010), 5071–5077.CrossRefGoogle Scholar
  22. [22]
    B.N. Lundstrom, M.H. Higgs, W.J. Spain, A.L. Fairhall, Fractional differentiation by neocortical pyramidal neurons. Nature Neuroscience 11 (2008), 1335–1342.CrossRefGoogle Scholar
  23. [23]
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam, 2006.Google Scholar
  24. [24]
    A.A. Kilbas, B. Bonilla, J.J. Trujillo, Nonlinear differential equations of fractional order is space of integrable functions. Doklady Mathematics 62 (2000), 222–226, Translated from Doklady Akademii Nauk 374 (2000), 445–449. (in Russian).Google Scholar
  25. [25]
    A.A. Kilbas, B. Bonilla, J.J. Trujillo, Existence and uniqueness theorems for nonlinear fractional differential equations. Demonstratio Mathematica 33 (2000), 583–602.MathSciNetzbMATHGoogle Scholar
  26. [26]
    V.E. Tarasov, Differential equations with fractional derivative and universal map with memory. Journal of Physics A 42 (2009), 465102.MathSciNetCrossRefGoogle Scholar
  27. [27]
    A. Wineman, Nonlinear viscoelastic membranes. Computers and Mathematics with Applications 53 (2007), 168–181.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    A. Wineman, Nonlinear Viscoelastic Solids – A Review. Mathematics and Mechanics of Solids 14 (2009), 300–366MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics, and Epidemics. SIAM, Philadelphia, 1975.Google Scholar
  30. [30]
    F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology. Springer, New York, 2001.Google Scholar
  31. [31]
    V. Gafiychuk, B. Datsko, Mathematical modeling of different types of instabilities in time fractional reaction–diffusion systems. Computers and Mathematics with Applications 59 (2010), 1001–1007.MathSciNetCrossRefGoogle Scholar
  32. [32]
    V. Gafiychuk, B. Datsko, V. Meleshko, D. Blackmore, Analysis of the solutions of coupled nonlinear fractional reaction–diffusion equations. Chaos, Solitons & Fractals 41 (2009), 1095–1104.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    V. Gafiychuk, B. Datsko, Stability analysis and limit cycle in fractional system with Brusselator nonlinearities. Phys. Let. A 372 (2008), 4902–4904.zbMATHCrossRefGoogle Scholar
  34. [34]
    V. Gafiychuk, B. Datsko, V. Meleshko, Analysis of fractional order Bonhoeffer-van der Pol oscillator. Physica A 387 (2008), 418–424.CrossRefGoogle Scholar
  35. [35]
    G.M. Zaslavsky, A.A. Stanislavsky, M. Edelman, Chaotic and pseudochaotic attractors of perturbed fractional oscillator. Chaos 16 (2006), 013102.MathSciNetCrossRefGoogle Scholar
  36. [36]
    M.S. Tavazoei, M. Haeri, Chaotic attractors in incommensurate fractional order systems. Physica D 237 (2008), 2628–2637.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    V.E. Tarasov, G.M. Zaslavsky, Fractional equations of kicked systems and discrete maps. J. Phys. A 41 (2008), 435101.MathSciNetCrossRefGoogle Scholar
  38. [38]
    M. Edelman, V.E. Tarasov, Fractional standard map. Phys. Let. A 374 (2009), 279– 285.MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    V.E. Tarasov, M. Edelman, Fractional dissipative standard map. Chaos 20 (2010), 023127.MathSciNetCrossRefGoogle Scholar
  40. [40]
    V.E. Tarasov, Discrete map with memory from fractional differential equation of arbitrary positive order. Journal of Mathematical Physics. 50 (2009), 122703.MathSciNetCrossRefGoogle Scholar
  41. [41]
    B.V. Chirikov, A universal instability of many dimensional oscillator systems. Phys. Rep. 52 (1979), 263–379.MathSciNetCrossRefGoogle Scholar
  42. [42]
    G.M. Zaslavsky, The simplest case of a strange attractor. Phys. Lett. A 69 (1978), 145–147.MathSciNetCrossRefGoogle Scholar
  43. [43]
    G.M. Zaslavsky, Kh.-R. Ya. Rachko, Singularities of transition to a turbulent motion. Sov. Phys. JETP 49 (1979), 1039–1044.Google Scholar
  44. [44]
    A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics. Springer, Berlin, 1992.Google Scholar
  45. [45]
    G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford, 2005.Google Scholar
  46. [46]
    E. Ott, Strange Attractors and Chaotic Motions of Dynamical Systems. Rev. Mod. Phys. 53 (1981), 655–671.MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    V. Afraimovich, Sze-Bi Hsu, Lectures on Chaotic Dynamical Systems. Amer. Math. Society. International Press, Providence, 2002.Google Scholar
  48. [48]
    P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors. Physica D 9 (1983), 189–208.MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    D.A. Russel, J.D. Hanson, and E. Ott, Dimension of strange attractors. PRL 45 (1980), 1175–1178.CrossRefGoogle Scholar
  50. [50]
    F. Haake, Quantum Signatures of Chaos. Springer, Berlin, 2000.Google Scholar
  51. [51]
    G.M. Zaslavsky, M. Edelman, Superdiffusion in the Dissipative Standard Map. Chaos 18 (2008), 033116.MathSciNetCrossRefGoogle Scholar
  52. [52]
    Q. Wang and L.-S. Young, From invariant curves to strange attractors. Commun. in Math. Phys. 225 (2002), 275–304.MathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    Q. Wang and L.-S. Young, Strange attractors in periodically-kicked limit cycles and Hopf bifurcations. Commun. in Math. Phys. 240 (2003), 509–529.MathSciNetzbMATHGoogle Scholar
  54. [54]
    M. Edelman, Fractional Standard Map: Riemann-Liouville vs. Caputo. Commun. Nonlin. Sci. Numer. Simul, 16 (2011), 4573–4580.MathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    A. Fulinski, A.S. Kleczkowski, Nonlinear maps with memory. Physica Scripta 35 (1987), 119–122.MathSciNetzbMATHCrossRefGoogle Scholar
  56. [56]
    E. Fick, M. Fick, G. Hausmann, Logistic equation with memory. Phys. Rev. A 44 (1991), 2469–2473.MathSciNetCrossRefGoogle Scholar
  57. [57]
    K. Hartwich, E. Fick, Hopf bifurcations in the logistic map with oscillating memory Phys. Lett. A 177 (1993), 305–310.MathSciNetCrossRefGoogle Scholar
  58. [58]
    M. Giona, Dynamics and relaxation properties of complex systems with memory. Nonlinearity 4 (1991), 911–925.MathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    J.A.C. Gallas, Simulating memory effects with discrete dynamical systems. Physica A 195 (1993), 417–430; Erratum. Physica A 198 (1993), 339–339.Google Scholar
  60. [60]
    A.A. Stanislavsky, Long-term memory contribution as applied to the motion of discrete dynamical system. Chaos 16 (2006), 043105.MathSciNetCrossRefGoogle Scholar
  61. [61]
    G. Schmidt, Stochasticity and fixed-point transitions. Phys. Rev. A 22 (1980), 2849– 2854.MathSciNetCrossRefGoogle Scholar
  62. [62]
    Y. Li, Y.Q. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59 (2010), 1810–1821.MathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    M. Edelman, Cascade of bifurcation type trajectories in fractional dynamical systems submitted to Chaos.Google Scholar
  64. [64]
    G.M. Zaslavsky, M. Edelman, B.A. Niyazov, Self-Similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics. Chaos 7 (1997), 159–181.MathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    V.E. Tarasov, Universal electromagnetic waves in dielectrics. J Phys.: Condens. Matter 20 (2008), 175223.Google Scholar
  66. [66]
    F. Hoppensteadt, A nonlinear renewal equation with periodic and chaotic solutions. SIAM-AMS Proc. 10 (1976), 51–60.MathSciNetGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Stern College for Women at Yeshiva UniversityNew YorkUSA

Personalised recommendations