Some New Hardy-type Integral Inequalities on Cones of Monotone Functions

Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 229)

Abstract

Some new Hardy-type inequalities with Hardy-Volterra integral operators on the cones of monotone functions are obtained. The case 1 < pq < ∞ is considered and the involved kernels satisfy conditions which are less restrictive than the classical Oinarov condition.

Keywords

Hardy type inequalities boundedness integral operators Volterra integral operator kernels weighted Lebesgue spaces maximal function nonincreasing function non-decreasing function. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Ari˜no and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for non-increasing functions. Trans. Amer. Math. Soc. 320 (1990), 727–735.Google Scholar
  2. [2]
    I. Asekritova, N. Krugljak, L. Maligranda and L.-E. Persson, Distribution and rearrangement estimates of the maximal function and interpolation. Studia Math 124 (1997), no. 2, 107–132.MathSciNetMATHGoogle Scholar
  3. [3]
    A. Gogatishvili, M. Johansson, C. A. Okpoti and L.-E. Persson, Characterisation of embeddings in Lorentz spaces. Bull. Austral. Math. Soc. 76 (2007), no. 1, 69–92.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    H.P. Heinig and V.D. Stepanov, Weighted Hardy inequalities for increasing functions. Canad. J. Math. 45 (1993), no. 1, 104–116.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    V. Kokilashvili, A. Meskhi and L.-E. Persson, Weighted norm inequalities for integral transforms with product kernels. Nova Science Publishers Inc. New York, 2010.Google Scholar
  6. [6]
    A. Kufner, L. Maligranda and L.-E. Persson, The Hardy inequality. About its history and some related results. Vydavatelsk´y Servis, Plseˇn, 2007.Google Scholar
  7. [7]
    A. Kufner and L.-E. Persson, Weighted inequalities of Hardy type. World Scientific, New Jersey, 2003.Google Scholar
  8. [8]
    C.J. Neugebauer, Weights for the Hardy operator on non-decreasing functions. Int. J. Pure Appl. Math. 60 (2010), no. 1, 71–82.MathSciNetMATHGoogle Scholar
  9. [9]
    R. Oinarov, Boundedness and compactness of Volterra-type integral operators. Sibirsk. Mat. Zh. 48 (2007), no. 5, 1100–1115; English transl. in Siberian Math J. 48 (2007), no. 5, 884–896.Google Scholar
  10. [10]
    B. Opic and A. Kufner, Hardy-type inequalities. Pitman Research Notes in Mathematics, Series 219, Longman Science and Technology, Harlow, 1990.Google Scholar
  11. [11]
    L.-E. Persson, O.V. Popova and V.D. Stepanov, Two-sided Hardy-type inequalities for monotone functions. Doklady Mathematics 80 (2009), no. 3, 814–817.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    L.-E. Persson, O.V. Popova and V.D. Stepanov, Two-sided Hardy-type inequalities for monotone functions. Complex Variables and Elliptic Equations 55 (2010), no. 8-10, 973–989.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    L.-E. Persson, V.D. Stepanov and E.P. Ushakova, Equivalence of Hardy-type inequalities with general measures on the cones of non-negative respective non-increasing functions. Proc. Amer. Math. Soc. 134 (2006), 2363–2372.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    E. Sawyer, Boundedness of classical operators on classical Lorentz spaces. Studia Math. 96 (1990), 145–158.MathSciNetMATHGoogle Scholar
  15. [15]
    G. Sinnamon, Hardy’s inequality and monotonocity. Function Spaces and Nonlinear Analysis (eds.: P. Dr´abec and J. R´akosnik), Mathematical Institute of the Academy of Sciences of the Czech Republic, Prague, 2005, 292–310.Google Scholar
  16. [16]
    V.D. Stepanov, The weighted Hardy’s inequality for non-increasing functions. Trans. Amer. Math. Soc. 338 (1993), 173–186.MathSciNetMATHGoogle Scholar
  17. [17]
    V.D. Stepanov, Integral operators on the cone of monotone functions. J. London Math. Soc. 48 (1993), 465–487.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • L. S. Arendarenko
    • 1
  • R. Oinarov
    • 1
  • L.-E. Persson
    • 2
    • 3
  1. 1.Department of Fundamental and Applied MathematicsEurasian National UniversityAstanaKazakhstan
  2. 2.Department of Engineering Sciences and MathematicsLuleå University of TechnologyLuleåSweden
  3. 3.Narvik University CollegeNarvikNorway

Personalised recommendations