# The Role of S.G. Samko in the Establishing and Development of the Theory of Fractional Differential Equations and Related Integral Operators

Conference paper

First Online:

## Abstract

The aim of this work is to describe main aspects of the modern theory of fractional differential equations, to present elements of classification of fractional differential equations, to formulate basic components of investigations related to fractional differential equations, to pose some open problems in the study of fractional differential equations. A survey of results by S.G. Samko on different problems of modern mathematical analysis is given. Main results of S.G. Samko having an essential influence on the establishing and development of the theory of fractional differential equations are singled out.

## Keywords

Fractional calculus fractional differential equations fractional integral operators potential type operators.## Preview

Unable to display preview. Download preview PDF.

## References

- [1]A. Abramyan, V.A. Nogin, S. Samko,
*Fractional powers of the operator1*−∣x∣^{2}Δ*in L*^{p}*-spaces*. Differ. Equations**32**, No. 2 (1996), 281–283.Google Scholar - [2]A. Almeida, S. Samko,
*Characterization of Riesz and Bessel potentials on variable Lebesgue spaces*. J. Function Spaces and Applic.,**4**, No. 2 (2006), 113–144.Google Scholar - [3]R. Cardoso, S. Samko,
*Integral equations of the first kind of Sonine type*. Intern. J. Math. and Math. Sci.**57**(2003), 3609–3632.MathSciNetGoogle Scholar - [4]R. Cardoso, S. Samko,
*Sonine integral equations of the first kind of in*(0*, b*). Fract. Calc. and Applied Anal.**6**, No. 3 (2003), 235–258.Google Scholar - [5]R. Cardoso, S. Samko,
*Weighted generalized Hölder spaces as well-posedness classes for Sonine integral equations*. J. Integr. Equat. Appl.**20**, No. 4 (2008), 437–480.Google Scholar - [6]K. Diethelm,
*The Analysis of Fractional Differential Equations.*Springer Verlag: Lecture Notes in Mathematics**2004**, Heidelberg etc., 2010.Google Scholar - [7]F.D. Gakhov, S.G. Samko,
*General singular equation on an open contour*(Russian). Abstracts of Intern. Congress of Math. (1966), Moscow, Section 5 (Functional. Analysis), p. 41.Google Scholar - [8]F.D. Gakhov, E.I. Zverovich, S.G. Samko,
*Increment of the argument, logarithmic residue and a generalized principle of the argument*. Soviet Math. Dokl.**14**, No. 6 (1973), 1856–1860.Google Scholar - [9]F.D. Gakhov, E.I. Zverovich, S.G. Samko,
*A generalized argument principle*(Russian). Izv. Akad. Nauk Biel. SSR, ser. fis.-mat. nauk, No. 1 (1975), 5–16.Google Scholar - [10]R. Gorenflo, S. Samko,
*On the dependence of asymptotics of s-numbers of fractional integration operators on weight functions*. Integr. Transform. and Special Funct.**5**(1997), 191–212.MathSciNetzbMATHCrossRefGoogle Scholar - [11]N.K. Karapetiants, A.A. Kilbas, M. Saigo, S.G. Samko,
*Upper and lower bou nds for solutions of nonlinear Volterra convolution equations with power nonlinearity*. J. of Integr. Equat. and Appl.**12**, No. 4 (2001), 421–448.Google Scholar - [12]N.K. Karapetiants, S.G. Samko,
*A certain class of convolution type integral equations and its application*(Russian). Soviet Math. Dokl.**11**(1970), 1050–1054.Google Scholar - [13]N.K. Karapetiants, S.G. Samko,
*A certain class of convolution type integral equations and its application*(Russian). Math. USSR, Izvestija**5**, No. 3 (1971), 731–744.Google Scholar - [14]N.K. Karapetiants, S.G. Samko,
*Singular integral operators with shift on an open contour*. Soviet Math. Dokl.**13**, No. 3 (1972), 691–696.Google Scholar - [15]N.K. Karapetiants, S.G. Samko,
*Singular integral operators on the axis with a fractional-linear shift of Carlemanian type and the Noether property for operators containing an involution*(Russian). Izv. Akad. Nauk Armyan. SSR,**7**, No. 1 (1972), 68–77.Google Scholar - [16]N.K. Karapetiants, S.G. Samko,
*Singular integral operators with Carleman shift in the case of piece-wise continuous coefficients, I*(Russian). Izv. Vuzov. Matematika, No. 2 (1975), 43–54.Google Scholar - [17]N.K. Karapetiants, S.G. Samko,
*Singular integral operators with Carleman shift in the case of piece-wise continuous coefficients, II*(Russian). Izv. Vuzov. Matematika, No. 3 (1975), 34–42.Google Scholar - [18]N.K. Karapetiants, S.G. Samko,
*Integral equations of convolution type of the first kind with a power kernel*(Russian). Izv. Vuzov. Matematika, No. 4 (1975), 60–67.Google Scholar - [19]N.K. Karapetiants, S.G. Samko,
*Singular convolution operators with a discontinuous symbol*(Russian). Soviet Math. Dokl.**16**, No. 2 (1975), 510–514.Google Scholar - [20]S. Kempfle, I. Schaefer and H. Beyer,
*Fractional calculus via functional calculus: theory and applications*. Nonlinear Dynamics,**29**(2002), 99–127.MathSciNetzbMATHCrossRefGoogle Scholar - [21]A.A. Kilbas, M. Saigo,
*H-Transform. Theory and Applications*. Boca Raton-London- New York-Washington, D.C., Chapman and Hall/CRC, 2004.Google Scholar - [22]A.A. Kilbas, S.G. Samko,
*Integral operators with homogeneous kernels in the Hölder H-space*(Russian). Dokl. Akad. Nauk Biel. SSR**21**, No. 1 (1977), 5–8.Google Scholar - [23]A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo,
*Theory and Applications of Fractional Differential Equations*. North-Holland Mathematics Studies.**204**. Elsevier, Amsterdam, etc., 2006.Google Scholar - [24]A.A. Kilbas, and J.J. Trujillo,
*Differential equations of fractional order: methods, results and problems – II.*J. Appl. Anal.,**81**(2002), 435–494.MathSciNetzbMATHCrossRefGoogle Scholar - [25]V. Kiryakova,
*Generalized Fractional Calculus and Applications*. Harlow, Longman, 1994 [Pitman Research Notes in Mathematics,**301**].Google Scholar - [26]V. Kokilashvili, V. Paatashvili, S. Samko,
*Boundary value problems for analytic functions in the class of Cauchy type integrals with density in**L*^{p(.)}. Bound. Value Probl.**2005**, No. 1-2 (2005), 43–71.Google Scholar - [27]V. Kokilashvili, V. Paatashvili, S. Samko,
*Boundedness in Lebesgue spaces with variable exponent of the Cauchy singular operators on Carleson curves*. “Operator Theory: Advances and Applications”,**170**(dedicated to the 70th birthday of Prof. I.B. Simonenko). Editors Ya. Erusalimsky, I. Gohberg, S. Grudsky, V. Rabinovich, N. Vasilevski, Birkh¨auser, 2006, 167–186.Google Scholar - [28]V. Kokilashvili, V. Paatashvili, S. Samko,
*Riemann Problem in the Class of Cauchy- Type Integrals with Density in**L*^{p}(.)(*G*). Doklady Mathematics**78**, No. 1 (2008), 510–513.Google Scholar - [29]V. Kokilashvili, N. Samko, S. Samko,
*Singular operators in variable spaces**L*^{p(.)}(Γ*, ρ*)*with oscillating weights*. Math. Nachrichten**280**, No. 9-10 (2007), 1145–1156.Google Scholar - [30]V. Kokilashvili, S. Samko,
*Singular operators and Fourier multipliers in weighted Lebesgue spaces with variable exponents*. Vestnik St. Petersburg University. Mathematics**41**, No. 2 (2008), 134–144.Google Scholar - [31]V. Kokilashvili, S. Samko,
*Boundedness of weighted singular integral operators in Grand Lebesgue spaces*. Georg. J. Math.**18**, Issue 2 (2011), 259–269.Google Scholar - [32]E.R. Love, B. Ross, S. Samko,
*Functions that have no first-order derivative might have fractional derivatives of all orders less than one*. Real Analysis Exchange**20**(2) (1994/95), 140–157.Google Scholar - [33]F. Mainardi,
*Fractional calculus and waves in linear viscoelasticity*. London, Imperial College Press, 2010.Google Scholar - [34]O.I. Marichev,
*Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables*. Chichester, Ellis Horwood, 1983.Google Scholar - [35]A.M. Mathai, H.J. Haubold,
*Special Functions for Applied Scientists*. New York, Springer, 2008.Google Scholar - [36]A.M. Mathai, R.K. Saxena, H.J. Haubold,
*The H-function. Theory and applications.*Dordrecht, Springer, 2010.Google Scholar - [37]K.S. Miller, B. Ross,
*An Introduction to the Fractional Calculus and Fractional Differential Equations*, New York, John Wiley and Sons, 1993.Google Scholar - [38]H.M. Murdaev, S.G. Samko,
*Action of fractional integrodifferentiation in weighted generalized Hölder spaces H*_{0}^{ω}(*ρ*) with the weight ρ(*x*) = (*x-a*)^{µ}(*b-x*)^{ν}(Russian). Deponierted in VINITI May 11, 1986, No. 3350-B86 DEP.Google Scholar - [39]Z.U. Mussalaeva, S.G. Samko,
*Fractional type operators in weighted generalized Hölder spaces*. Proc. of the Georgian Academy of Sci., Mathematics**1**, No. 5 (1993), 601–626.Google Scholar - [40]V.A. Nogin, S.G. Samko,
*Inversion and description of Riesz potentials with densities in weighted Lp-spaces*(Russian). Izv. Vuzov. Matematika, No. 1 (1985), 70–72 (Transl. in Soviet Math. (Izv.VUZ)).Google Scholar - [41]B. Ross, S.G. Samko,
*Fractional integration operator of variable order in the Hölder spaces**H*^{λ(x)}. Intern. J. of Math. and Math. Sci.**18**, No. 4 (1995), 777–788.Google Scholar - [42]S.G. Samko, A.A. Kilbas, O.I. Marichev,
*Fractional Integrals and Derivatives and Some of Their Applications*(Russian). Minsk, Nauka i Tekhnika. 1987Google Scholar - [43]S.G. Samko, A.A. Kilbas, O.I. Marichev,
*Fractional Integrals and Derivatives: Theory and Applications*. New York and London, Gordon and Breach Science Publishers, 1993.Google Scholar - [44]I. Podlubny,
*Fractional Differential Equations*. New York, Academic Press, 1999.Google Scholar - [45]H. Rafeiro, S. Samko,
*On multidimensional analogue of Marchaud formula for fractional Riesz-type derivatives in Domains in*ℝ^{n}. Fract. Calc. Appl. Anal.**8**, No. 4 (2005), 393–401.Google Scholar - [46]H. Rafeiro, S. Samko,
*On a class of fractional type integral equations in variable exponent spaces*. Fract. Calc. and Appl. Anal.**10**, No. 4 (2007), 399–421.Google Scholar - [47]H. Rafeiro, S. Samko,
*Characterization of the range of one-dimensional fractional integration in the space with variable exponent*. “Operator Theory: Advances and Applications”,**181**(eds. M.A. Bastos, I. Gohberg, A.B. Lebre), 2008, 393-416.Google Scholar - [48]N. Samko, S.G. Samko,
*On approximative definition of a fractional differentiation*. Fract. Calc. and Applied Anal.**2**, No. 3 (1999), 329–342.Google Scholar - [49]S.G. Samko,
*A generalized Abel equation and an equation with Cauchy kernel*(Russian). Dokl. Akad. Nauk SSSR,**176**, No. 5 (1967), 1019–1022.Google Scholar - [50]S.G. Samko,
*A general singular equation on an open contour and a generalized Abel equation*(Russian). Dokl. Akad. Nauk SSSR,**177**, No. 1 (1967), 44–47.Google Scholar - [51]S.G. Samko,
*A generalized Abel equation and fractional integration operators*(Russian). Differentsial’nye Uravnenija,**4**, No. 2 (1968), 298–314.MathSciNetzbMATHGoogle Scholar - [52]S.G. Samko,
*Noether’s theory for the generalized Abel integral equation*(Russian). Differentsial’nye Uravnenija**4**, No. 2 (1968), 315–326.MathSciNetzbMATHGoogle Scholar - [53]S.G. Samko,
*The solvability in closed form of singular integral equations*. Soviet Math. Dokl.**10**, No. 6 (1969), 1445–1448.Google Scholar - [54]S.G. Samko,
*Abel’s generalized equation, Fourier transform and convolution type equations*. Soviet Math. Dokl.**10**, No. 4 (1969), 942–946.Google Scholar - [55]S.G. Samko,
*Abel’s generalized integral equation on the line*(Russian). Izv. Vyssh. Uchebn. Zaved. Math. No. 8 (1970), 83–93.MathSciNetGoogle Scholar - [56]S.G. Samko,
*The space*(*Lp*)*of fractional integrals, and operators of potential type*(Russian). Izv. Akad. Nauk Armyan. SSR**7**, No. 5 (1973), 359–383.Google Scholar - [57]S.G. Samko,
*Singular integral and integro-differential equations with analytic kernels*(Russian). Izv. Severo-Kavk. Tsentra Vysshei Shkoly, ser. estestv. nauk. No. 4 (1974), 86–94.Google Scholar - [58]S.G. Samko,
*On the description of the image*(*Lp*)*of Riesz potentials*(Russian). Izv. Akad. Nauk Armyan. SSR, Matematika**12**, No. 5 (1977), 329–334.Google Scholar - [59]S.G. Samko,
*Generalized Riesz potentials and hypersingular integrals, their symbols and inversion*. Soviet Math. Dokl.**18**, No. 1 (1977), 97–101.Google Scholar - [60]S.G. Samko,
*Integral equation of the first kind with a logarithmic kernel, II*(Russian). Collection of papers “Math. Analysis and its Appl.”, Rostov-on-Don, Izdat. Rostov. Univ., 1978, 103–120.Google Scholar - [61]S.G. Samko,
*The multidimensional fractional integrodifferentiation and the Grunwald- Letnikov approach to fractional calculus*. Proc. Intern. Conf. “Fract. Calculus and its Applic.”, Tokyo, 1989, College of Engineering, Nihon Univ., 1990, 221–225Google Scholar - [62]S.G. Samko,
*Fractional differentiation and integration of variable order*. Dokl.Math.**51**, No.3 (1995), 401–403.Google Scholar - [63]S.G. Samko,
*Fractional integration and differentiation of variable order.*Analysis Mathematica**21**(1995), 213–236.MathSciNetzbMATHCrossRefGoogle Scholar - [64]S.G. Samko,
*Convolution type operators in L*^{p(x)}. Integr. Transform. and Special Funct.**7**, No. 1-2 (1998), 123–144.Google Scholar - [65]S.G. Samko,
*Convolution and potential type operators in the space L*^{p(x)}. Integr. Transform. and Special Funct.**7**, No. 3-4 (1998), 261–284.Google Scholar - [66]S.G. Samko,
*Fractional powers of operators via hypersingular operators*, In “Progress in Nonlinear Diff. Eq. and Their Applic.”, Birkh¨auser,**42**, 2000, 259–272.Google Scholar - [67]S.G. Samko,
*Approximative approach to construction of fractional powers of operators*(Russian). Izvestia Vysch. Uchebn. Zaved., Severo-Kavkazskii Region, Estestv. Nauki, No. 4 (2001), 41–44.Google Scholar - [68]S.M. Umarkhadzhiev, S.G. Samko,
*Applications of hypersingular integrals to multidimensional integral equations of the first kind*. Proc. Steklov Inst. Math. Issue 3 (1987), 325–339.Google Scholar - [69]V.V. Uchaikin,
*Method of fractional derivatives*(Russian). Ulyanovsk, Artishok, 2008.Google Scholar

## Copyright information

© Springer Basel 2013