Fractional Variational Calculus of Variable Order

  • T. Odzijewicz
  • A. B. Malinowska
  • D. F. M. Torres
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 229)

Abstract

We study the fundamental problem of the calculus of variations with variable order fractional operators. Fractional integrals are considered in the sense of Riemann–Liouville while derivatives are of Caputo type.

Keywords

Fractional operators fractional integration and differentiation of variable order fractional variational analysis Euler–Lagrange equations. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Almeida, S. Samko, Fractional and hypersingular operators in variable exponent spaces on metric measure spaces. Mediterr. J. Math. 6 (2009), 215–232.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    R. Almeida, A.B. Malinowska, D.F.M. Torres, A fractional calculus of variations for multiple integrals with application to vibrating string. J. Math. Phys. 51 (2010), 033503, 12 pp.Google Scholar
  3. [3]
    R. Almeida, D.F.M. Torres, Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 22 (2009), 1816–1820.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    T.M. Atanackovic, S. Pilipovic, Hamilton’s principle with variable order fractional derivatives. Fract. Calc. Appl. Anal. 14 (2011), 94–109.MathSciNetGoogle Scholar
  5. [5]
    N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Syst. 29 (2011), 417–437.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Discrete-time fractional variational problems. Signal Process. 91 (2011), 513–524.MATHCrossRefGoogle Scholar
  7. [7]
    C.F.M. Coimbra, Mechanics with variable-order differential operators. Ann. Phys. 12 (2003), 692–703.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    J. Cresson, Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys. 48 (2007), 033504, 34 pp.Google Scholar
  9. [9]
    G. Diaz, C.F.M. Coimbra, Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dynam. 56 (2009), 145–157.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    G.S.F. Frederico, D.F.M. Torres, Fractional conservation laws in optimal control theory. Nonlinear Dynam. 53 (2008), 215–222.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    G.S.F. Frederico, D.F.M. Torres, Fractional Noether’s theorem in the Riesz-Caputo sense. Appl. Math. Comput. 217 (2010), 1023–1033.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    P. Ivady, A note on a gamma function inequality. J. Math. Inequal. 3 (2009), 227– 236.MathSciNetCrossRefGoogle Scholar
  13. [13]
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006.Google Scholar
  14. [14]
    M. Klimek, Fractional sequential mechanics – models with symmetric fractional derivative, Czechoslovak J. Phys. 51 (2001), no. 12, 1348–1354.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    M. Klimek, Lagrangian and Hamiltonian fractional sequential mechanics, Czechoslovak J. Phys. 52 (2002), no. 11, 1247–1253.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    M. Klimek, Stationarity-conservation laws for fractional differential equations with variable coefficients. J. Phys. A 35 (2002), 6675–6693.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    M. Klimek, Lagrangian fractional mechanics – a noncommutative approach. Czechoslovak J. Phys. 55 (2005), 1447–1453.MathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Klimek, On solutions of linear fractional differential equations of a variational type. The Publishing Office of Czenstochowa University of Technology, Czestochowa, 2009.Google Scholar
  19. [19]
    C.F. Lorenzo, T.T. Hartley, Variable order and distributed order fractional operators. Nonlinear Dynam. 29 (2002), 57–98.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    A.B. Malinowska, D.F.M. Torres, Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput. Math. Appl. 59 (2010), 3110–3116.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    D. Mozyrska, D.F.M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative. Carpathian J. Math. 26 (2010), 210–221.MathSciNetMATHGoogle Scholar
  22. [22]
    D. Mozyrska, D.F.M. Torres, Modified optimal energy and initial memory of fractional continuous-time linear systems. Signal Process. 91 (2011), 379–385.MATHCrossRefGoogle Scholar
  23. [23]
    T. Odzijewicz, A.B. Malinowska, D.F.M. Torres, Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal. 75 (2012), 1507–1515.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    T. Odzijewicz, A.B. Malinowska, D.F.M. Torres, Generalized fractional calculus with applications to the calculus of variations, Comput. Math. Appl. 64 (2012), 3351–3366.MathSciNetCrossRefGoogle Scholar
  25. [25]
    T. Odzijewicz, A.B. Malinowska, D.F.M. Torres, Fractional calculus of variations in terms of a generalized fractional integral with applications to physics, Abstr. Appl. Anal. 2012 (2012), Art. ID 871912, 24 pp.Google Scholar
  26. [26]
    H.T.C. Pedro, M.H. Kobayashi, J.M.C. Pereira, C.F.M. Coimbra, Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14 (2008), 1569–1672.MathSciNetCrossRefGoogle Scholar
  27. [27]
    I. Podlubny, Fractional differential equations. Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA, 1999.Google Scholar
  28. [28]
    L.E.S. Ramirez, C.F.M. Coimbra, On the selection and meaning of variable order operators for dynamic modeling. Int. J. Differ. Equ. 2010 (2010), Art. ID 846107, 16 pp.Google Scholar
  29. [29]
    L.E.S. Ramirez and C.F.M. Coimbra, On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Phys. D 240 (2011), 1111–1118.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E (3) 53 (1996), 1890–1899.Google Scholar
  31. [31]
    F. Riewe, Mechanics with fractional derivatives. Phys. Rev. E (3) 55 (1997), 3581– 3592.Google Scholar
  32. [32]
    B. Ross, S.G. Samko, Fractional integration operator of a variable order in the Hölder spaces H λ(x) . Internat. J. Math. Math. Sci. 18 (1995), 777–788.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    S.G. Samko, Fractional integration and differentiation of variable order. Anal. Math. 21 (1995), 213–236.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives, translated from the 1987 Russian original, Gordon and Breach, Yverdon, 1993.Google Scholar
  35. [35]
    S.G. Samko, B. Ross, Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1 (1993), 277–300.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    J.A. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1140–1153.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    B. van Brunt, The calculus of variations. Universitext, Springer, New York, 2004.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • T. Odzijewicz
    • 1
  • A. B. Malinowska
    • 2
  • D. F. M. Torres
    • 1
  1. 1.Center for Research and Development in Mathematics and Applications Department of MathematicsUniversity of AveiroAveiroPortugal
  2. 2.Faculty of Computer ScienceBiałystok University of TechnologyBiałystokPoland

Personalised recommendations