Skip to main content

A Probabilistic Inequality Related to Negative Definite Functions

  • Conference paper
  • First Online:
High Dimensional Probability VI

Part of the book series: Progress in Probability ((PRPR,volume 66))

Abstract

We prove that for any pair of i.i.d. random vectors X,Y in \(\mathbb{R}^n\) and any real-valued continuous negative definite function \(\psi\; : \;\mathbb{R}^n\rightarrow\mathbb{R}\) the inequality

$$\mathbb{E}\;\psi\;(X\;-\;Y)\leqslant\mathbb{E}\;\psi\;(X\;+\;Y).$$

holds. In particular, for \(\alpha\;\in\;(0,2]\) and the Euclidean norm \(\|\cdot\|_2\) one has

$$\mathbb{E}\|(X\;-\;Y)\|^\alpha_2\leqslant\mathbb{E}\|(X\;+\;Y)\|^\alpha_2.$$

The latter inequality is due to A. Buja et al. [4] where it is used for some applications in multivariate statistics. We show a surprising connection with bifractional Brownian motion and provide some related counter-examples.

Mathematics Subject Classification (2010). Primary 60E15; Secondary 60G22, 60E10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. X. Bardina, K. Es-Sebaiy (2011), An extension of bifractional Brownian motion, Commun. Stochast. Analysis 5 333–340. [arXiv:1002.3680]

    Google Scholar 

  2. Y. Benyamini, J. Lindenstrauss (2000), Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society, AMS Colloquium Publications vol. 48, Providence (RI).

    Google Scholar 

  3. C. Berg, G. Frost (1975), Potential Theory on Locally Compact Abelian Groups, Springer, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete 87.

    Google Scholar 

  4. A. Buja, B.F. Logan, J.A. Reeds, L.A. Shepp (1994), Inequalities and positivedefinite functions arising from a problem in multidimensional scaling, Ann. Statist. 22, 406–438.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Dellacherie, P.-A. Meyer (1983), Probabilités et potentiel, Chapitres IX à XI: Théorie discrète du potentiel, Hermann, Paris.

    Google Scholar 

  6. C. Houdré, J. Villa (2003), An example of infinite dimensional quasi-helix, in: J.M. González-Barrios, J.A. León, A. Meda (eds.), Stochastic Models, American Mathematical Society, Contemporary Mathematics vol. 336, 195–201, Provicence (RI).

    Google Scholar 

  7. N. Jacob, V. Knopova, S. Landwehr, R.L. Schilling (2012), A geometric interpretation of the transition density of a symmetric LĂ©vy process. To appear in: Sci. China: Mathematics.

    Google Scholar 

  8. H. Kempka, A. Nekvinda (2011), private communication.

    Google Scholar 

  9. P. Lei, D. Nualart (2009), A decomposition of the bifractional Brownian motion and some applications, Statist. Probab. Letters 79 619–624. [arXiv:0803.2227]

    Google Scholar 

  10. Putnam Competition (2004) Sixty-fourth Annual William Lowell Putnam Mathematical Competition, Saturday December 6, 2003, Amer. Math. Monthly 111 780– 790.

    Google Scholar 

  11. R. Schilling, R. Song, Z. VondraÄŤek (2010), Bernstein Functions, de Gruyter, Berlin, Studies in Mathematics 37.

    Google Scholar 

  12. I.J. Schoenberg (1938), Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44, 522–536.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Lifshits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Lifshits, M., Schilling, R.L., Tyurin, I. (2013). A Probabilistic Inequality Related to Negative Definite Functions. In: Houdré, C., Mason, D., Rosiński, J., Wellner, J. (eds) High Dimensional Probability VI. Progress in Probability, vol 66. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0490-5_5

Download citation

Publish with us

Policies and ethics