Skip to main content

On the Operator Norm of Random Rectangular Toeplitz Matrices

  • Conference paper
  • First Online:

Part of the book series: Progress in Probability ((PRPR,volume 66))

Abstract

We consider rectangular N x n Toeplitz matrices generated by sequences of centered independent random variables and provide bounds on their operator norm under the assumption of finiteness of pth moments (p > 2). We also show that if N ≫ n log n then with high probability such matrices preserve the Euclidean norm up to an arbitrarily small error.

Mathematics Subject Classification (2010). 60B20, 60E15.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Adamczak, A few remarks on the operator norm of random Toeplitz matrices. J. Theoret. Probab., 2010, 23, 85–108.

    Article  MathSciNet  MATH  Google Scholar 

  2. M.A. Arcones, E. Giné, On decoupling, series expansions, and tail behavior of chaos processes. J. Theoret. Probab., 1993, 6, 101–122.

    Article  MathSciNet  MATH  Google Scholar 

  3. Z.D. Bai, Methodologies in spectral analysis of large-dimensional random matrices, a review Statist. Sinica, 1999, 9, 611–677.

    MATH  Google Scholar 

  4. C. Borell, On a Taylor series of a Wiener polynomial. In Seminar Notes on Multiple Stochastic Integration, Polynomial Chaos and Their Integration. 1984. Case Western Reserve Univ., Cleveland.

    Google Scholar 

  5. A. Bose, S. Gangopadhyay, A. Sen, Limiting spectral distribution of XX′ matrices. Ann. Inst. Henri Poincaré Probab. Stat., 2010, 46, 677–707.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Bose, R.S. Hazra, K. Saha, Spectral norm of circulant-type matrices. J. Theoret. Probab., 2011, 24, 479–516.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Bryc, A. Dembo, T. Jiang, Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab., 2006, 34, 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  8. V.H. de la Peña, E. Giné, Decoupling. From Dependence to Independence, Springer- Verlag, 1999.

    Google Scholar 

  9. C. Hammond, S.J. Miller, Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theoret. Probab., 2005, 18, 537–566.

    Article  MathSciNet  MATH  Google Scholar 

  10. D.L. Hanson, F.T. Wright, A bound on tail probabilities for quadratic forms in independent random variables. Ann. Math. Statist., 1971, 42, 1079–1083.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Latała, Tail and moment estimates for some types of chaos. Studia Math., 1999, 135, 39–53.

    MathSciNet  MATH  Google Scholar 

  12. R. Latała, Estimates of moments and tails of Gaussian chaoses. Ann. Probab., 2006, 34, 2315–2331.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Ledoux, M. Talagrand, Probability in Banach spaces Springer-Verlag, 1991, 23.

    Google Scholar 

  14. M.W. Meckes, On the spectral norm of a random Toeplitz matrix. Electron. Comm. Probab., 2007, 12, 315–325.

    MathSciNet  MATH  Google Scholar 

  15. H. Rauhut, Circulant and Toeplitz matrices in compressed sensing. Proceedings SPARS ’09. Saint-Malo, France, 2009.

    Google Scholar 

  16. A. Sen, B. Virág, The top eigenvalue of the random Toeplitz matrix and the Sine kernel. Available at http://arxiv.org/abs/1109.5494.

  17. M. Talagrand, The generic chaining. Springer-Verlag, 2005.

    Google Scholar 

  18. N. Tomczak-Jaegermann,The moduli of smoothness and convexity and the Rademacher averages of trace classes S p (1 < p < ∞). Studia Math. 50 (1974), 163–182.

    MathSciNet  MATH  Google Scholar 

  19. N. Tomczak-Jaegermann,Banach-Mazur distances and finite dimensional operator ideals. Longman Scientific & Technical, 1989, 38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radosław Adamczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Adamczak, R. (2013). On the Operator Norm of Random Rectangular Toeplitz Matrices. In: Houdré, C., Mason, D., Rosiński, J., Wellner, J. (eds) High Dimensional Probability VI. Progress in Probability, vol 66. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0490-5_16

Download citation

Publish with us

Policies and ethics