Skip to main content

Dispersive Properties of Schrödinger Operators in the Absence of a Resonance at Zero Energy in 3D

  • Chapter
  • First Online:
Evolution Equations of Hyperbolic and Schrödinger Type

Part of the book series: Progress in Mathematics ((PM,volume 301))

  • 1120 Accesses

Abstract

In this paper we study spectral properties associated to the Schrödinger operator − Δ −Wwith potential W that is an exponentially decaying C 1 function. As applications we prove local energy decay for solutions to the perturbed wave equation and lack of resonances for the NLS.

Mathematics Subject Classification. Primary 35B34; Secondary 35L05.

To Bruna

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2/2 (1975), 151–218.

    MathSciNet  MATH  Google Scholar 

  2. S. Agmon A perturbation theory of resonances, Comm. Pure Appl. Math. 51 (1998), no. 11-12, 1255–1309.

    Google Scholar 

  3. M. Ben-Artzi Spectral theory for divergence-form operators, in “Spectral and Scattering Theory and Related Topics”, Ed. H. Ito, RIMS Kokyuroku 1607 (2008), 77–84.

    Google Scholar 

  4. N. Burq, F. Planchon, J.G. Stalker, A.S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203, (2003), no. 2, 519–549.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Burq, F. Planchon, J.G. Stalker, A.S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J., 53 (2004), no. 6, 1665–1680.

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Burq, M. Zworski, Resonance expansions in semi-classical propagation. Commun. Math. Phys., 223 (1), (2001), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  7. V.S. Buslaev, C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Annales de l’Institut Henri Poincaré (C) Non Linear Analysis, 20/3 (2003), 419–475.

    Google Scholar 

  8. V.S. Buslaev, G.S. Perelman, On the stability of solitary waves for nonlinear Schrödinger equations, Amer. Math. Soc. Trans., 164/2 (1995), 75–98.

    MathSciNet  Google Scholar 

  9. T. Cazenave, P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Physics, 85/4 (1982), 549–561.

    Google Scholar 

  10. T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10 New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp.

    Google Scholar 

  11. S. Chang, S. Gustafson, K. Nakanishi, T.P. Tsai, Asymptotic Stability and Completeness in the Energy Space for Nonlinear Schrödinger Equations with Small Solitary Waves, Siam J. Math. Anal. 39 (2007), 1070–1111.

    Article  MathSciNet  MATH  Google Scholar 

  12. O. Costin, H. Min and W. Schlag, On the spectral properties of L ± in three dimensions, preprint (2011) arXiv:1107.0323v1.

    Google Scholar 

  13. S. Cuccagna, T. Mizumachi, On asymptotic stability in energy space of ground states for Nonlinear Schrödinger equations, Comm. Math. Phys., 284 (2008), 51–87.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Demanet, W. Schlag, Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation, Nonlinearity 19 2006, no. 4, 829–852.

    Google Scholar 

  15. L. Fanelli, Non-trapping magnetic fields and Morey–Campanato estimates for Schrödinger operators, Journal of Mathematical Analysis and Applications, 357(1) 2009, 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Georgiev, N. Visciglia, Decay estimates for the wave equation with potential, Comm. Partial Differential Equations, 28 (7-8), (2003), 1325–1369.

    Article  MathSciNet  MATH  Google Scholar 

  17. B.Gidas,W.M. Ni, L. Nirenberg, Symmetry of positive solutions to nonlinear elliptic equations in R n, Mathematical Analysis and Applications, Part A, Advances in Mathematics, Supplementary Studies, vol 7A (1981) 369–402.

    MathSciNet  Google Scholar 

  18. S. Gustafson, K. Nakanishi, T.P. Tsai, Asymptotic Stability and Completeness in the Energy Space for Nonlinear Schrödinger Equations with Small Solitary Waves, Int. Math. Res. Notices, 66 (2004), 3559–3584.

    Google Scholar 

  19. A. Jensen, T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. Journal, 46(3) (1979), 583–611.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions in L 2(ℛm),m ≥ 5, Duke Math. Journal, 47(1) (1980), 57–80.

    Article  MATH  Google Scholar 

  21. M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J.Math., 120(5), 955–980, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  22. J.L. Marzuola and G. Simpson, Spectral analysis for matrix Hamiltonian operators Nonlinearity 24 (2011) 389–429.

    MathSciNet  MATH  Google Scholar 

  23. J. Metcalfe and C.D. Sogge, Hyperbolic trapped rays and global existence of quasilinear wave equations, Invent. Math., 159(1) (2005), 75–117.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Pego, M. Weinstein, Asymptotic Stability of Solitary Waves, Commun. Math. Phys., 164 (1994), 305–349.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré 2, (2001), no. 4, 605–673.

    Google Scholar 

  26. G. Perelman, Asymptotic Stability of multi-soliton solutions for nonlinear Schrödinger equation, Communications in Partial Differential Equations, 29/7,8 (2004), 1051–1095.

    Google Scholar 

  27. B. Perthame and L. Vega, Morrey Campanato Estimates for Helmholtz Equations, Journal of Functional Analysis, 164 (1999), 340–355.

    Article  MathSciNet  MATH  Google Scholar 

  28. A.G. Ramm, Domain where the resonances are absent in the three-dimensional scattering problem, Sov. Phys.-Doklady, 166 (1966), 1319–1322.

    Google Scholar 

  29. A. Sà Barreto, M. Zworski, Distribution of resonances for spherical black holes. Math. Res. Lett. 4(1), (1997), 103–121.

    Google Scholar 

  30. W. Schlag, Stable manifolds for an orbitally unstable nonlinear Schrödinger equation, Ann. of Math. 2 (2009), no. 1, 139–227.

    Article  MathSciNet  Google Scholar 

  31. J. Sjöstrand, Lectures on resonances, homepage of J. Sjöstrand at www.math.polytechnique.fr/∼sjoestrand.

  32. W. Strauss, Existence of Solitary Waves in Higher Dimension, Comm.Math. Physics 55, (1977), 149–162.

    Article  MATH  Google Scholar 

  33. B.R. Vainberg, Asymptotic methods in equations of mathematical physics. Translated from the Russian by E. Primrose. Gordon & Breach Science Publishers, New York, 1989. viii+498 pp.

    Google Scholar 

  34. M. Weinstein, Modulational Stability of Ground States of Nonlinear Schrodinger Equations, SIAM J. Math. Anal. 16 (1985), no. 3, 472–491.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Georgiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this chapter

Cite this chapter

Georgiev, V., Tarulli, M. (2012). Dispersive Properties of Schrödinger Operators in the Absence of a Resonance at Zero Energy in 3D. In: Ruzhansky, M., Sugimoto, M., Wirth, J. (eds) Evolution Equations of Hyperbolic and Schrödinger Type. Progress in Mathematics, vol 301. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0454-7_7

Download citation

Publish with us

Policies and ethics