Negative Time Delay for Wave Reflection from a One-dimensional Semi-harmonic Well

  • Oscar Rosas-Ortiz
  • Sara Cruz y Cruz
  • Nicolás Fernández-García
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

It is reported that the phase time of particles which are reflected by a one-dimensional semi-harmonic well includes a time delay term which is negative for definite intervals of the incoming energy. In this interval, the absolute value of the negative time delay becomes larger as the incident energy becomes smaller. The model is a rectangular well with zero potential energy at its right and a harmonic-like interaction at its left.

Keywords

Exactly solvable potentials phase time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.G. Muga, R. Sala Mayato, and I.L. Egusquiza (Eds.) Time in Quantum Mechanics 2nd Edition, Springer, 2008.Google Scholar
  2. 2.
    J.G. Muga, A. Ruschhaupt, and A. del Campo (Eds.) Time in Quantum Mechanics Volume 2, Springer, 2010.Google Scholar
  3. 3.
    T.E. Hartman, Tunneling of a Wave Packet, J. Appl. Phys. 33 (1962) 3427.CrossRefGoogle Scholar
  4. 4.
    T. Martin and R. Landauer, Time delay of evanescent electromagnetic waves and the analogy to particle tunneling, Phys. Rev. A 45 (1992) 2611.CrossRefGoogle Scholar
  5. 5.
    A. Enders and G. Nimtz, On superluminal barrier traversal, J. Phys. I France 2 (1992) 1693.CrossRefGoogle Scholar
  6. 6.
    A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, Measurement of Single-Photon Tunneling Time, Phys. Rev. Lett. 71 (1993) 708.CrossRefGoogle Scholar
  7. 7.
    L. Brillouin, Wave Propagation and Group velocity, Academic Press, 1960.Google Scholar
  8. 8.
    E.P. Wigner, Lower limit for the energy derivative of the scattering phase shift, Phys. Rev. 98 (1955) 145.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    F.T. Smith, Lifetime matrix in collision theory, Phys. Rev. 118 (1960) 349.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    M. Büttiker, Larmor precession and the traversal time for tunneling, Phys. Rev. E 27 (1983) 6178.CrossRefGoogle Scholar
  11. 11.
    E.H. Huage, and J.A. Støvneng, Tunneling times: a critical review, Rev.Mod. Phys. 61 (1989) 917.CrossRefGoogle Scholar
  12. 12.
    R. Landauer, Barrier interaction time in tunneling, Rev.Mod. Phys. 66 (1994) 217.CrossRefGoogle Scholar
  13. 13.
    C.F. Li and Q. Wang, Negative phase time for particles passing through a potential well, Phys. Lett. A 275 (2000) 287.CrossRefGoogle Scholar
  14. 14.
    L. Alonso-Silva, S. Cruz y Cruz, N. Fernández-García, and O. Rosas-Ortiz, preprint Cinvestav 2011.Google Scholar
  15. 15.
    R.M. Vetter, A. Haibel, and G. Nimtz, Negative phase time for scattering at quantum wells: A microwave analogy experiment, Phys. Rev. E 63 (2001) 046701, 5 pages.Google Scholar
  16. 16.
    J.G. Muga, I.L. Egusquiza, J.A. Damborenea, and F. Delgado, Bounds and enhancements for negative scattering time delays, Phys. Rev. A 66 (2002) 042115, 8 pages.Google Scholar
  17. 17.
    N. Fernández-García and O. Rosas-Ortiz, Rectangular Potentials in a Semi-Harmonic Background: Spectrum, Resonances and Dwell Time, SIGMA 7 (2011) 044, 17 pages.Google Scholar
  18. 18.
    J. Neg ro, L.M. Nieto, and O. Rosas-Ortiz, On a class of supersymmetric quantum mechanical singular potentials, in Foundations of Quantum Physics, R. Blanco et al. (Eds.), CIEMAT/RSEF, 2002.Google Scholar
  19. 19.
    M.G. Espinoza and P. Kielanowski, Unstable quantum oscillator, J. Phys. Conf. Ser. 128 (2008) 012037, 7 pages.Google Scholar
  20. 20.
    N. Fernández-García and O. Rosas-Ortiz, Gamow-Siegert functions and Darbouxdeformed short range potentials, Ann. Phys. 323 (2008) 1397.CrossRefMATHGoogle Scholar
  21. 21.
    O. Rosas-Ortiz, N. Fernández-García, and S. Cruz y Cruz, A primer on Resonances in Quantum Mechanics, AIP CP 1077 (2008) 31.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Oscar Rosas-Ortiz
    • 1
  • Sara Cruz y Cruz
    • 2
  • Nicolás Fernández-García
    • 2
  1. 1.Physics DepartmentCinvestavMéxico D.F.Mexico
  2. 2.Sección de Estudios de Posgrado e InvestigaciónUPIITA-IPNMéxico D.F.Mexico

Personalised recommendations