Geometry of the Set of Mixed Quantum States: An Apophatic Approach

Conference paper
Part of the Trends in Mathematics book series (TM)


The set of quantum states consists of density matrices of order N, which are hermitian, positive and normalized by the trace condition. We analyze the structure of this set in the framework of the Euclidean geometry naturally arisingin the space of hermitian matrices. For \( N\,\,=\,\,2 \) this set is the Bloch ball, embedded in \( \mathbb{R}^3 \). For \( N\,\,\geq \,\,3\) this set of dimensionality \( N^2 \,\,-\,1 \) has a much richer structure. We study its properties and at first advocate an apophatic approach, which concentrates on characteristics not possessed by this set. We also apply more constructive techniques and analyze twodimensional cross-sections and projections of the set of quantum states. They are dual to each other. At the end we make some remarks on certain dimension dependent properties.


Quantum states density matrices convex sets PACS. 03.65.Aa 02.40.Ft. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Mielnik, Geometry of quantum states Commun. Math. Phys. 9, 55–80 (1968).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M. Adelman, J.V. Corbett and C.A. Hurst, The geometry of state space, Found. Phys. 23, 211 (1993).MathSciNetCrossRefGoogle Scholar
  3. 3.
    G. Mahler and V.A. Weberuss, Quantum Networks (Springer, Berlin, 1998).Google Scholar
  4. 4.
    E.M. Alfsen and F.W. Shultz, Geometry of State Spaces of Operator Algebras, (Boston: Birkhäuser 2003).Google Scholar
  5. 5.
    J. Grabowski, M. Kuś, G. Marmo Geometry of quantum systems: density states and entanglement J.Phys. A 38, 10217 (2005).Google Scholar
  6. 6.
    I. Bengtsson and K. Życzkowski, Geometry of quantum states: An introduction to quantum entanglement (Cambridge: Cambridge University Press 2006).Google Scholar
  7. 7.
    L. Hardy, Quantum Theory From Five Reasonable Axioms, preprint quant-ph/ 0101012Google Scholar
  8. 8.
    F.J. Bloore, Geometrical description of the convex sets of states for systems with spin1/2 and spin1, J. Phys. A 9, 2059 (1976).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Arvind, K.S. Mallesh and N. Mukunda, A generalized Pancharatnam geometric phase formula for three-level quantum systems, J. Phys. A 30, 2417 (1997).Google Scholar
  10. 10.
    L. Jakóbczyk and M. Siennicki, Geometry of Bloch vectors in two-qubit system, Phys. Lett. A 286, 383 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    F. Verstraete, J. Dahaene and B. DeMoor, On the geometry of entangled states, J. Mod. Opt. 49, 1277 (2002).CrossRefzbMATHGoogle Scholar
  12. 12.
    P. Ø. Sollid, Entanglement and geometry, PhD thesis, Univ. of Oslo 2011.Google Scholar
  13. 13.
    S.Weis, A Note on TouchingC ones and Faces, Journal of Convex Analysis 19 (2012).
  14. 14.
    S. Weis, Quantum Convex Support, Lin. Alg. Appl. 435, 3168 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    C.F. Dunkl, P. Gawron, J.A. Holbrook, J.A. Miszczak, Z. Puchała and K. Życzkowski, Numerical shadow and geometry of quantum states, J. Phys. A44, 335301 (2011).Google Scholar
  16. 16.
    S.K. Goyal, B.N. Simon, R. Singh, and S. Simon, Geometry of the generalized Bloch sphere for qutrit,
  17. 17.
    S. Szarek, I. Bengtsson and K. Życzkowski, On the structure of the body of states with positive partial transpose, J. Phys. A 39, L119–L126 (2006).CrossRefzbMATHGoogle Scholar
  18. 18.
    K. Życzkowski and H.-J. Sommers, Hilbert–Schmidt volume of the set of mixed quantum states, J. Phys. A 36, 10115–10130 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    J. Grabowski, M. Kuś, and G. Marmo, Geometry of quantum systems: density states and entanglement, J. Phys. A38, 10217 (2005).Google Scholar
  20. 20.
    R.T. Rockafellar, Convex Analysis (Princeton: Princeton University Press 1970).Google Scholar
  21. 21.
    B. Grünbaum, Convex Polytopes, 2nd ed., (New York: Springer-Verlag, 2003).Google Scholar
  22. 22.
    A. Wilce, Four and a half axioms for finite dimensional quantum mechanics, (2009).
  23. 23.
    M.P. Müller and C. Ududec, The power of reversible computation determines the self-duality of quantum theory, (2011).
  24. 24.
    G. Kimura, The Bloch vector for N-level systems, Phys. Lett. A 314, 339 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    G. Kimura and A. Kossakowski, The Bloch-vector space for N-level systems – the spherical-coordinate point of view, Open Sys. Information Dyn. 12, 207 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    D. Henrion, Semidefinite representation of convex hulls of rational varieties, (2009).
  27. 27.
    P. Rostalski and B. Sturmfels, Dualities in convex algebraic geometry, (2010).
  28. 28.
    A. Horn and C.R. Johnson, Topics in Matrix Analysis (Cambridge: Cambridge University Press, 1994).Google Scholar
  29. 29.
    K.E. Gustafson and D.K.M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices (New York: Springer-Verlag, 1997).Google Scholar
  30. 30.
    P. Gawron, Z. Puchała, J.A. Miszczak, Ł . Skowronek and K. Życzkowski, Restricted numerical range: a versatile tool in the theory of quantum information, J. Math. Phys. 51, 102204 (2010).Google Scholar
  31. 31.
    D. Henrion, Semidefinite geometry of the numerical range, Electronic J. Lin. Alg. 20, 322 (2010).MathSciNetzbMATHGoogle Scholar
  32. 32.
    R. Kippenhahn, Über denWertevorrat einer Matrix, Math. Nachr. 6, 193–228 (1951).Google Scholar
  33. 33.
    D.S. Keeler, L. Rodman and I.M. Spitkovsky, The numerical range of 3×3 matrices, Lin. Alg. Appl. 252 115 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    A. Knauf and S. Weis, Entropy Distance: New Quantum Phenomena, (2010).
  35. 35.
    S. Weis, Duality of non-exposed faces, (2011).
  36. 36.
    A.J. Scott and M. Grassl, SIC-POVMs: A new computer study, J. Math. Phys. 51, 042203 (2010).MathSciNetCrossRefGoogle Scholar
  37. 37.
    W.K. Wootters and B.D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Phys. 191, 363 (1989).MathSciNetCrossRefGoogle Scholar
  38. 38.
    J. Schwinger: Quantum Mechanics. Symbolism of Atomic Measurements, ed. by B.- G. Englert, (Berlin: Springer-Verlag 2001).Google Scholar
  39. 39.
    F. Szöllősi, Construction, classification and parametrization of complex Hadamard matrices, PhD thesis, (2011).
  40. 40.
    W. Tadej and K. Życzkowski, Defect of a unitary matrix, Lin. Alg. Appl. 429, 447 (2008).CrossRefzbMATHGoogle Scholar
  41. 41.
    N. Barros e Sá, talk at the XXX Workshop on Geometric Methods in Physics.Google Scholar
  42. 42.
    Bogdan Mielnik, Convex Geometry: a travel to the limits of our knowledge, in this volume and preprint arxiv.org1202.2164.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Stockholms UniversitetStockholmSweden
  2. 2.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  3. 3.Institute of PhysicsJagiellonian UniversityKrakówPoland
  4. 4.Center for Theoretical PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations