Skip to main content

Geometry of the Set of Mixed Quantum States: An Apophatic Approach

  • Conference paper
  • First Online:
Geometric Methods in Physics

Part of the book series: Trends in Mathematics ((TM))

Abstract

The set of quantum states consists of density matrices of order N, which are hermitian, positive and normalized by the trace condition. We analyze the structure of this set in the framework of the Euclidean geometry naturally arisingin the space of hermitian matrices. For \( N\,\,=\,\,2 \) this set is the Bloch ball, embedded in \( \mathbb{R}^3 \). For \( N\,\,\geq \,\,3\) this set of dimensionality \( N^2 \,\,-\,1 \) has a much richer structure. We study its properties and at first advocate an apophatic approach, which concentrates on characteristics not possessed by this set. We also apply more constructive techniques and analyze twodimensional cross-sections and projections of the set of quantum states. They are dual to each other. At the end we make some remarks on certain dimension dependent properties.

Mathematics Subject Classification (2010). Primary 81P16; Secondary 52A20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. Mielnik, Geometry of quantum states Commun. Math. Phys. 9, 55–80 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Adelman, J.V. Corbett and C.A. Hurst, The geometry of state space, Found. Phys. 23, 211 (1993).

    Article  MathSciNet  Google Scholar 

  3. G. Mahler and V.A. Weberuss, Quantum Networks (Springer, Berlin, 1998).

    Google Scholar 

  4. E.M. Alfsen and F.W. Shultz, Geometry of State Spaces of Operator Algebras, (Boston: Birkhäuser 2003).

    Google Scholar 

  5. J. Grabowski, M. Kuś, G. Marmo Geometry of quantum systems: density states and entanglement J.Phys. A 38, 10217 (2005).

    Google Scholar 

  6. I. Bengtsson and K. Życzkowski, Geometry of quantum states: An introduction to quantum entanglement (Cambridge: Cambridge University Press 2006).

    Google Scholar 

  7. L. Hardy, Quantum Theory From Five Reasonable Axioms, preprint quant-ph/ 0101012

    Google Scholar 

  8. F.J. Bloore, Geometrical description of the convex sets of states for systems with spin1/2 and spin1, J. Phys. A 9, 2059 (1976).

    Article  MathSciNet  Google Scholar 

  9. Arvind, K.S. Mallesh and N. Mukunda, A generalized Pancharatnam geometric phase formula for three-level quantum systems, J. Phys. A 30, 2417 (1997).

    Google Scholar 

  10. L. Jakóbczyk and M. Siennicki, Geometry of Bloch vectors in two-qubit system, Phys. Lett. A 286, 383 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Verstraete, J. Dahaene and B. DeMoor, On the geometry of entangled states, J. Mod. Opt. 49, 1277 (2002).

    Article  MATH  Google Scholar 

  12. P. Ø. Sollid, Entanglement and geometry, PhD thesis, Univ. of Oslo 2011.

    Google Scholar 

  13. S.Weis, A Note on TouchingC ones and Faces, Journal of Convex Analysis 19 (2012). http://arxiv.org/abs/1010.2991

  14. S. Weis, Quantum Convex Support, Lin. Alg. Appl. 435, 3168 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  15. C.F. Dunkl, P. Gawron, J.A. Holbrook, J.A. Miszczak, Z. Puchała and K. Życzkowski, Numerical shadow and geometry of quantum states, J. Phys. A44, 335301 (2011).

    Google Scholar 

  16. S.K. Goyal, B.N. Simon, R. Singh, and S. Simon, Geometry of the generalized Bloch sphere for qutrit, http://arxiv.org/abs/1111.4427

  17. S. Szarek, I. Bengtsson and K. Życzkowski, On the structure of the body of states with positive partial transpose, J. Phys. A 39, L119–L126 (2006).

    Article  MATH  Google Scholar 

  18. K. Życzkowski and H.-J. Sommers, Hilbert–Schmidt volume of the set of mixed quantum states, J. Phys. A 36, 10115–10130 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Grabowski, M. Kuś, and G. Marmo, Geometry of quantum systems: density states and entanglement, J. Phys. A38, 10217 (2005).

    Google Scholar 

  20. R.T. Rockafellar, Convex Analysis (Princeton: Princeton University Press 1970).

    Google Scholar 

  21. B. Grünbaum, Convex Polytopes, 2nd ed., (New York: Springer-Verlag, 2003).

    Google Scholar 

  22. A. Wilce, Four and a half axioms for finite dimensional quantum mechanics, http://arxiv.org/abs/0912.5530 (2009).

  23. M.P. Müller and C. Ududec, The power of reversible computation determines the self-duality of quantum theory, http://arxiv.org/abs/1110.3516 (2011).

  24. G. Kimura, The Bloch vector for N-level systems, Phys. Lett. A 314, 339 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Kimura and A. Kossakowski, The Bloch-vector space for N-level systems – the spherical-coordinate point of view, Open Sys. Information Dyn. 12, 207 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Henrion, Semidefinite representation of convex hulls of rational varieties, http://arxiv.org/abs/0901.1821 (2009).

  27. P. Rostalski and B. Sturmfels, Dualities in convex algebraic geometry, http://arxiv.org/abs/1006.4894 (2010).

  28. A. Horn and C.R. Johnson, Topics in Matrix Analysis (Cambridge: Cambridge University Press, 1994).

    Google Scholar 

  29. K.E. Gustafson and D.K.M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices (New York: Springer-Verlag, 1997).

    Google Scholar 

  30. P. Gawron, Z. Puchała, J.A. Miszczak, Ł . Skowronek and K. Życzkowski, Restricted numerical range: a versatile tool in the theory of quantum information, J. Math. Phys. 51, 102204 (2010).

    Google Scholar 

  31. D. Henrion, Semidefinite geometry of the numerical range, Electronic J. Lin. Alg. 20, 322 (2010).

    MathSciNet  MATH  Google Scholar 

  32. R. Kippenhahn, Über denWertevorrat einer Matrix, Math. Nachr. 6, 193–228 (1951).

    Google Scholar 

  33. D.S. Keeler, L. Rodman and I.M. Spitkovsky, The numerical range of 3×3 matrices, Lin. Alg. Appl. 252 115 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Knauf and S. Weis, Entropy Distance: New Quantum Phenomena, http://arxiv.org/abs/1007.5464 (2010).

  35. S. Weis, Duality of non-exposed faces, http://arxiv.org/abs/1107.2319 (2011).

  36. A.J. Scott and M. Grassl, SIC-POVMs: A new computer study, J. Math. Phys. 51, 042203 (2010).

    Article  MathSciNet  Google Scholar 

  37. W.K. Wootters and B.D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Phys. 191, 363 (1989).

    Article  MathSciNet  Google Scholar 

  38. J. Schwinger: Quantum Mechanics. Symbolism of Atomic Measurements, ed. by B.- G. Englert, (Berlin: Springer-Verlag 2001).

    Google Scholar 

  39. F. Szöllősi, Construction, classification and parametrization of complex Hadamard matrices, PhD thesis, http://arxiv.org/abs/1150.5590 (2011).

  40. W. Tadej and K. Życzkowski, Defect of a unitary matrix, Lin. Alg. Appl. 429, 447 (2008).

    Article  MATH  Google Scholar 

  41. N. Barros e Sá, talk at the XXX Workshop on Geometric Methods in Physics.

    Google Scholar 

  42. Bogdan Mielnik, Convex Geometry: a travel to the limits of our knowledge, in this volume and preprint arxiv.org1202.2164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingemar Bengtsson .

Editor information

Editors and Affiliations

Additional information

Dedicated to prof. Bogdan Mielnik on the occasion of his 75th birthday

Primary 81P16; Secondary 52A20.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Bengtsson, I., Weis, S., Życzkowski, K. (2013). Geometry of the Set of Mixed Quantum States: An Apophatic Approach. In: Kielanowski, P., Ali, S., Odzijewicz, A., Schlichenmaier, M., Voronov, T. (eds) Geometric Methods in Physics. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0448-6_15

Download citation

Publish with us

Policies and ethics