Real-Time Control of Urban Drainage Systems

  • Johannes Hild
  • Günter LeugeringEmail author
Part of the International Series of Numerical Mathematics book series (ISNM, volume 162)


A hydrodynamic process model based on shallow water equations is discretized on 1D-networks with the method of finite volumes. Based on the finite volumes we replace algebraic coupling conditions by a consistent finite volume junction model. We use discrete adjoint computation for one step Runge-Kutta schemes to generate fast and robust gradients for descent methods. We use the descent methods to generate an optimal control for an example network and discuss the computational results.


  1. 1.
    M. Athans, P.L. Falb, Optimal Control: An Introduction to the Theory and Its Applications (Dover, New York, 1966) Google Scholar
  2. 2.
    F. Brauer, J.A. Nohel, Ordinary Differential Equations (A First Course) (Benjamin, New York, 1967) Google Scholar
  3. 3.
    J. Jahn, Introduction to the Theory of Nonlinear Optimization (Springer, Berlin, 1994) Google Scholar
  4. 4.
    P. Lax, B. Wendroff, Systems of conservation laws. Commun. Pure Appl. Math. 13(2), 217–237 Google Scholar
  5. 5.
    E.B. Lee, L. Markus, Foundations of Optimal Control Theory (Wiley, New York, 1967) Google Scholar
  6. 6.
    R.J. Leveque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics (2002) Google Scholar
  7. 7.
    E. Polak, Optimization: Algorithms and Consistent Approximations (Springer, New York, 1997) Google Scholar
  8. 8.
    E.F. Toro, Shock-Capturing Methods for Free-Surface Shallow Flows (Wiley, New York, 2001) Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Institut für Angewandte Mathematik (Lehrstuhl II)Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations