Optimal Control of Sewer Networks Problem Description

  • Steffen Heusch
  • Holger Hanss
  • Manfred OstrowskiEmail author
  • Roland Rosen
  • Annelie Sohr
Part of the International Series of Numerical Mathematics book series (ISNM, volume 162)


This chapter gives an overview of optimal control of sewer networks with dynamic process models. After introducing the method of model predictive control (MPC) and its requirements for optimization and process modeling a focus is set on practical applications and the industrial viewpoint. An up-to-date sewer management system is introduced and used to illustrate industrial requirements and the mathematical challenges involved in it.


Model Predictive Control Shallow Water Equation Real Time Control Manufacture Execution System Sewer Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Darsono, J.W. Labadie, Neural-optimal control algorithm for real-time regulation of in-line storage in combined sewer systems. Environ. Model. Softw. 22(9), 1349–1361 (2007) CrossRefGoogle Scholar
  2. 2.
    DWA, Advisory Leaflet DWA-M 180E: Framework for Planning of Real Time Control of Sewer Networks (German Association for Water, Wastewater and Waste, Germany, 2005) Google Scholar
  3. 3.
    E. Englmann, J. Lohmann, W. Schilling, S. Schlegel, Instrumentation and control of water and wastewater treatment and transport systems. Korresp. Abwasser 33(7), 559–562 (1986) Google Scholar
  4. 4.
    Helmut Gruening, Abflusssteuerung – quo vadis? KA, Wasserwirtsch. Abwasser Abfall 55(4), 5 (2008) Google Scholar
  5. 5.
    J.W. Labadie, N.S. Grigg, P.D. Trotta, Minimization of combined sewer overflows by large-scale mathematical programming. Comput. Oper. Res. 1(3–4), 421–435 (1974) CrossRefGoogle Scholar
  6. 6.
    A. Pirsing, R. Rosen, B. Obst, F. Montrone, Einsatz mathematischer optimierungsverfahren bei der abflusssteuerung in kanalnetzen. Gas – Wasserfach, Wasser Abwasser 147(5), 376–383 (2006) Google Scholar
  7. 7.
    M. Pleau, H. Colas, P. Lavallee, G. Pelletier, R. Bonin, Global optimal real-time control of the Quebec urban drainage system. Environ. Model. Softw. 20(2005), 401–413 (2005) CrossRefGoogle Scholar
  8. 8.
    M. Pleau, G. Pelletier, H. Colas, P. Lavallee, R. Bonin, Global predictive real-time control of Quebec urban community’s westerly sewer network. Water Sci. Technol. 43(7), 123–130 (2001) Google Scholar
  9. 9.
    W. Rauch, P. Harremoes, Genetic algorithms in real time control applied to minimize transient pollution from urban wastewater systems. Water Res. 33(5), 1265–1277 (1999) CrossRefGoogle Scholar
  10. 10.
    W. Schilling, 15 jahre kanalnetzsteuerung in den USA – was wurde erreicht? Korresp. Abwasser 33(2), 147–151 (1986) Google Scholar
  11. 11.
    M. Schuetze, D. Butler, M. Bruce Beck, Modelling, Simulation and Control of Urban Wastewater Systems (Springer, Berlin, 2002) CrossRefGoogle Scholar
  12. 12.
    Siemens, Siemens – annual report 2009, Technical report, 2010 Google Scholar
  13. 13.
    R. Tandler, Ansaetze für eine parallele ueberstauberechnung von kanalnetzen. Korresp. Abwasser 41(10), 1750–1761 (1994) Google Scholar
  14. 14.
    P.D. Trotta, J.W. Labadie, N.S. Grigg, Automatic control strategies for urban stormwater. J. Hydraul. Div. 103(12), 1443–1459 (1977) Google Scholar
  15. 15.
    M. Weyand, W. Schilling, J. Broll-Bickhardt, Wirtschaftlichkeit und effektivitaet der kanalnetzsteuerung. Korresp. Abwasser 47(2), 223–232 (2000) Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  • Steffen Heusch
    • 1
  • Holger Hanss
    • 2
  • Manfred Ostrowski
    • 1
    Email author
  • Roland Rosen
    • 3
  • Annelie Sohr
    • 3
  1. 1.Ingenieurhydrologie und WasserbewirtschaftungTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Siemens AG, I IS IN 1 WDCKarlsruheGermany
  3. 3.Siemens AG, CT T DE TC 3MunichGermany

Personalised recommendations