Mixed Integer Optimization of Water Supply Networks

  • Antonio Morsi
  • Björn Geißler
  • Alexander MartinEmail author
Part of the International Series of Numerical Mathematics book series (ISNM, volume 162)


We introduce a mixed integer linear modeling approach for the optimization of dynamic water supply networks based on the piecewise linearization of nonlinear constraints. One advantage of applying mixed integer linear techniques is that these methods are nowadays very mature, that is, they are fast, robust, and are able to solve problems with up to a huge number of variables. The other major point is that these methods have the potential of finding globally optimal solutions or at least to provide guarantees of the solution quality. We demonstrate the applicability of our approach on examples networks.


Mixed Integer Mixed Integer Linear Program Piecewise Linear Function Mixed Integer Linear Incremental Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Abreu, E. Cabrera, J. Izquierdo, J. García-Serra, Flow modeling in pressurized systems revisited. J. Hydraul. Eng. 125, 1154–1169 (1999) CrossRefGoogle Scholar
  2. 2.
    P. Domschke, B. Geißler, O. Kolb, J. Lang, A. Martin, A. Morsi, Combination of nonlinear and linear optimization of transient gas networks. INFORMS J. Comput. 23, 605–617 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    A. Fügenschuh, M. Herty, A. Klar, A. Martin, Combinatorial and continuous models for the optimization of traffic flows on networks. SIAM J. Optim. 16, 1155–1176 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    B. Geißler, A. Martin, A. Morsi, L. Schewe, Using piecewise linear functions for solving MINLPs, in Mixed Integer Nonlinear Programming, ed. by J. Lee, S. Leyffer. The IMA Volumes in Mathematics and its Applications, vol. 154 (Springer, Berlin, 2012), pp. 287–314 CrossRefGoogle Scholar
  5. 5.
    C.E. Gounaris, C.A. Floudas, Tight convex underestimators for ℂ2-continuous problems: I. Multivariate functions. J. Glob. Optim. 42, 69–89 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    C.E. Gounaris, C.A. Floudas, Tight convex underestimators for ℂ2-continuous problems: I. Univariate functions. J. Glob. Optim. 42, 51–67 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gurobi Optimization, Inc., Houston, Texas, USA. Gurobi Optimizer Version 4.0, 2010. Information available at URL
  8. 8.
    J. Lee, J. Margot, F. Margot, Min-up/min-down polytopes. Discrete Optim. 1, 77–85 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    H.M. Markowitz, A.S. Manne, On the solution of discrete programming problems. Econometrica 25, 84–110 (1957) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    M. Padberg, Approximating separable nonlinear functions via mixed zero-one programs. Oper. Res. Lett. 27(1), 1–5 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    J.P. Vielma, A.B. Keha, G.L. Nemhauser, Nonconvex, lower semicontinuous piecewise linear optimization. Discrete Optim. 5(2), 467–488 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    B. Wendroff, On centered difference equations for hyperbolic systems. J. Soc. Ind. Appl. Math. 8(3), 549–555 (1960) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    D. Wilson, Polyhedral methods for piecewise-linear functions. Ph.D. thesis in Discrete Mathematics, University of Kentucky, 1998 Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  • Antonio Morsi
    • 1
  • Björn Geißler
    • 1
  • Alexander Martin
    • 1
    Email author
  1. 1.Discrete Optimization (Lehrstuhl für Wirtschaftsmathematik)Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations