Multicriteria Optimization in Wastewater Management

  • Kerstin Dächert
  • Kathrin KlamrothEmail author
Part of the International Series of Numerical Mathematics book series (ISNM, volume 162)


In this chapter we consider the goals and objectives arising in wastewater management in the context of a multiobjective analysis. This allows, among others, the individual consideration of (1) the overflow volume (i.e., the total amount of released water), (2) the pollution load in the released water, and (3) the cost of the generated control. Given a specific sewage network and data of typical inflow scenarios, a multiobjective offline analysis of the problem and, in particular, of the trade-off between the different goals provides the decision maker with valuable information of the problem characteristics. This information can then be used to specify a suitable scalarized, single-objective optimization problem for the real-time optimal control that represents the decision makers preferences in a best possible way. If an efficient solver for such scalarizations is available (which is the case for the problems considered here), this leads to an efficient online procedure that is justified by an extensive offline problem analysis.

Even though the methods presented in this chapter were tailored for wastewater management problems, they are also applicable in the context of the other applications mentioned in this volume.


Wastewater Treatment Plant Scalarization Method Level Curve Nondominated Solution Wastewater Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Lars Balzer for support in programming.


  1. 1.
    L.J. Alvarez-Vazquez, N. Garcia-Chan, A. Martinez, M.E. Vazquez-Mendez, Multi-objective Pareto-optimal control: An application to wastewater management. Comput. Optim. Appl. 46, 135–157 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    G. Boldur, Linear programming problems with complex decision conditions, in 7th Mathematical Programming Symposium, The Hague, September 1970 Google Scholar
  3. 3.
    V.J. Bowman, On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives, in Multiple Criteria Decision Making, ed. by H. Thieriez, S. Zionts (Springer, Berlin, 1976), pp. 76–85 Google Scholar
  4. 4.
    V. Chankong, Y.Y. Haimes, Multiobjective Decision Making: Theory and Methodology (Elsevier, New York, 1983) zbMATHGoogle Scholar
  5. 5.
    K. Dächert, J. Gorski, K. Klamroth, An adaptive augmented weighted Tchebycheff method to solve discrete, integer-valued bicriteria optimization problems. Technical Report BUW-AMNA-OPAP 10/06, University of Wuppertal, FB Mathematik und Naturwissenschaften, 2010 Google Scholar
  6. 6.
    I. Das, J.E. Dennis, A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct. Optim. 14, 63–69 (1997) CrossRefGoogle Scholar
  7. 7.
    K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, Chichester, 2001) zbMATHGoogle Scholar
  8. 8.
    M. Ehrgott, Multicriteria Optimization (Springer, Berlin, 2005) zbMATHGoogle Scholar
  9. 9.
    P. Eskelinen, K. Miettinen, K. Klamroth, J. Hakanen, Pareto navigator for interactive nonlinear multiobjective optimization. OR Spektrum 23, 211–227 (2010) MathSciNetGoogle Scholar
  10. 10.
    A.M. Geoffrion, Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    J. Hakanen, Y. Kawajiri, K. Miettinen, L.T. Biegler, Interactive multi-objective optimization for simulated moving bed processes. Control Cybern. 36(2), 283–302 (2007) MathSciNetzbMATHGoogle Scholar
  12. 12.
    H.W. Hamacher, C.R. Pedersen, S. Ruzika, Finding representative systems for discrete bicriteria optimization problems by box algorithms. Oper. Res. Lett. 35(3), 336–344 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    M.P. Hansen, A. Jaszkiewicz, Evaluating the quality of approximations to the non-dominated set. Technical Report IMM-REP-1998-7, IMM Technical University of Denmark, 1998 Google Scholar
  14. 14.
    I. Kaliszewski, Using trade-off information in decision-making algorithms. Comput. Oper. Res. 27, 161–182 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    K. Klamroth, J. Tind, M.M. Wiecek, Unbiased approximation in multicriteria optimization. Math. Methods Oper. Res. 56, 413–437 (2002) MathSciNetzbMATHGoogle Scholar
  16. 16.
    K. Klamroth, J. Tind, Constrained optimization using multiple objective programming. J. Glob. Optim. 37, 325–355 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    K. Klamroth, K. Miettinen, Integrating approximation and interactive decision making in multicriteria optimization. Oper. Res. 56, 224–234 (2008) MathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Marinaki, M. Papageorgiou, Optimal Real-Time Control of Sewer Networks. Advances in Industrial Control (Springer, Berlin, 2005) zbMATHGoogle Scholar
  19. 19.
    K. Miettinen, Nonlinear Multiobjective Optimization (Kluwer Academic, Boston, 1999) zbMATHGoogle Scholar
  20. 20.
    D. Muschalla, Optimization of integrated urban wastewater systems using multi-objective evolution strategies. Urban Water Journal 5(1), 57–65 (2008) CrossRefGoogle Scholar
  21. 21.
    A. Pascoletti, P. Serafini, Scalarizing vector optimization problems. J. Optim. Theory Appl. 42, 499–524 (1984) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    M. Pleau, H. Colas, P. Lavallée, G. Pelletier, R. Bonin, Global optimal real-time control of the Quebec urban drainage system. Environ. Model. Softw. 20, 401–413 (2005) CrossRefGoogle Scholar
  23. 23.
    T. Ralphs, M. Saltzman, M.M. Wiecek, An improved algorithm for solving biobjective integer programs. Ann. Oper. Res. 147, 43–70 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    W. Rauch, P. Harremoës, Genetic algorithms in real time control applied to minimize transient pollution from urban wastewater systems. Water Res. 33(5), 1265–1277 (1999) CrossRefGoogle Scholar
  25. 25.
    S. Ruzika, M.M. Wiecek, A survey of approximation methods in multiobjective programming. J. Optim. Theory Appl. 126(3), 473–501 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    S. Sayin, Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming. Math. Program. 87, 543–560 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    M. Schütze, A. Campisano, H. Colas, W. Schilling, P.A. Vanrolleghem, Real time control of urban wastewater systems – where do we stand today? J. Hydrol. 299, 335–348 (2004) Google Scholar
  28. 28.
    R.E. Steuer, E. Choo, An interactive weighted Tchebycheff procedure for multiple objective programming. Math. Program. 26, 326–344 (1983) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    R.E. Steuer, Multiple Criteria Optimization: Theory, Computation, and Application (Wiley, New York, 1986) zbMATHGoogle Scholar
  30. 30.
    A. Wächter, L.T. Biegler, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    G. Weinreich, W. Schilling, A. Birkely, T. Moland, Pollution based real time control strategies for combined sewer systems. Water Sci. Technol. 36(8–9), 331–336 (1997) Google Scholar
  32. 32.
    A.P. Wierzbicki, The use of reference objectives in multiobjective optimization, in Multiple Criteria Decision Making Theory and Applications, ed. by G. Fandel, T. Gal (Springer, Berlin, 1980), pp. 468–486 CrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Department of Mathematics and Informatics, Faculty of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany

Personalised recommendations