Skip to main content

Chikungunya Virus Infection

  • Chapter
  • First Online:
Viral Infections of the Human Nervous System

Part of the book series: Birkhäuser Advances in Infectious Diseases ((BAID))

Abstract

Chikungunya virus (CHIKV) belongs to the “old world” Alphavirus family and is an arbovirus transmitted by Aedes mosquitoes. It is a tropical disease originally described in central/east Africa in the 1950s, but the recent re-emergence from 2004 in Africa and rapid spread in and around the Indian Ocean (Reunion island, India, Malaysia) as well as Europe (Italy) led to several millions of cases with unprecedented neurological complications. Recent epidemics in 2005–2008 have revealed that there is a high titer viremia and that CHIKV can gain access to the brain in susceptible hosts such as neonates and elderly patients with comorbidities (chronic disease of liver, heart, and kidneys). New mutated forms were identified in the recent outbreaks, but their contribution to severe pathologies is only speculative at this stage. Classically, CHIKV causes an acute symptomatic illness over a period of 5–7 days with fever, skin rash, and incapacitating arthralgias, and can evolve into chronic rheumatoid arthritis-like diseases, particularly in elderly patients. CHIKV infection can also lead to severe meningoencephalitis, encephalitis with white matter lesions, peripheral neuropathies, optic neuritis, and death. In neonates central nervous system (CNS) infection can lead to long-term sequelae. The early and robust systemic innate and adaptive immune responses are able to protect the host. However, the virus has been shown to persist in tissue sanctuaries months after the initial infection in humans and animal models. In the brain, CHIKV preferentially targets astrocytes, ependymal cells, epithelial cells of the choroid plexus, and neurons. The route and the mechanisms involved in neuroinfection, the antiviral response mounted by resident cells and neuroinflammation are largely ill-characterized. CHIKV may critically polarize host-cell defense mechanisms such as IFN signaling pathway, apoptosis, and autophagy to its own advantage and studies to decipher the molecular mechanisms of immune escape are now highly warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25. doi:S0969-9961(09)00208-3[pii], 10.1016/j.nbd.2009.07.030

    Article  PubMed  CAS  Google Scholar 

  • Anderson BA (1984) Focal neurologic signs in western equine encephalitis. Can Med Assoc J 130(8):1019–1021

    PubMed  CAS  Google Scholar 

  • Arpino C, Curatolo P, Rezza G (2009) Chikungunya and the nervous system: what we do and do not know. Rev Med Virol 19(3):121–129. doi:10.1002/rmv.606

    Article  PubMed  Google Scholar 

  • Binder GK, Griffin DE (2001) Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. Science 293(5528):303–306. doi:10.1126/science.1059742, 293/5528/303 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Binn LN, Harrison VR, Randall R (1967) Patterns of viremia and antibody observed in rhesus monkeys inoculated with chikungunya and other serologically related group A arboviruses. Am J Trop Med Hyg 16(6):782–785

    PubMed  CAS  Google Scholar 

  • Borgherini G, Poubeau P, Staikowsky F, Lory M, Le Moullec N, Becquart JP, Wengling C, Michault A, Paganin F (2007) Outbreak of chikungunya on Reunion Island: early clinical and laboratory features in 157 adult patients. Clin Infect Dis 44(11):1401–1407

    Article  PubMed  Google Scholar 

  • Borgherini G, Poubeau P, Jossaume A, Gouix A, Cotte L, Michault A, Arvin-Berod C, Paganin F (2008) Persistent arthralgia associated with chikungunya virus: a study of 88 adult patients on reunion island. Clin Infect Dis 47(4):469–475

    Article  PubMed  Google Scholar 

  • Brehin AC, Casademont I, Frenkiel MP, Julier C, Sakuntabhai A, Despres P (2009) The large form of human 2′,5′-Oligoadenylate Synthetase (OAS3) exerts antiviral effect against Chikungunya virus. Virology 384(1):216–222

    Article  PubMed  CAS  Google Scholar 

  • Briolant S, Garin D, Scaramozzino N, Jouan A, Crance JM (2004) In vitro inhibition of Chikungunya and Semliki Forest viruses replication by antiviral compounds: synergistic effect of interferon-alpha and ribavirin combination. Antiviral Res 61(2):111–117

    Article  PubMed  CAS  Google Scholar 

  • Bruzzone R, Dubois-Dalcq M, Kristensson K (2010) Neurobiology of infectious diseases: bringing them out of neglect. Prog Neurobiol 91(2):91–94. doi:10.1016/j.pneurobio.2009.12.005

    Article  PubMed  Google Scholar 

  • Chandak NH, Kashyap RS, Kabra D, Karandikar P, Saha SS, Morey SH, Purohit HJ, Taori GM, Daginawala HF (2009) Neurological complications of Chikungunya virus infection. Neurol India 57(2):177–180

    Article  PubMed  Google Scholar 

  • Charrel RN, de Lamballerie X, Raoult D (2007) Chikungunya outbreaks—the globalization of vectorborne diseases. N Engl J Med 356(8):769–771

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee SN, Sarkar JK (1965) Electron microscopic studies of suckling mouse brain cells infected with Chikungunya virus. Indian J Exp Biol 3(4):227–234

    PubMed  CAS  Google Scholar 

  • Chen CI, Clark DC, Pesavento P, Lerche NW, Luciw PA, Reisen WK, Brault AC (2010) Comparative pathogenesis of epidemic and enzootic Chikungunya viruses in a pregnant Rhesus macaque model. Am J Trop Med Hyg 83(6):1249–1258. doi:10.4269/ajtmh.2010.10-0290

    Article  PubMed  Google Scholar 

  • Couderc T, Chretien F, Schilte C, Disson O, Brigitte M, Guivel-Benhassine F, Touret Y, Barau G, Cayet N, Schuffenecker I, Despres P, Arenzana-Seisdedos F, Michault A, Albert ML, Lecuit M (2008a) A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog 4(2):e29

    Article  PubMed  Google Scholar 

  • Couderc T, Chretien F, Schilte C, Disson O, Brigitte M, Guivel-Benhassine F, Touret Y, Barau G, Cayet N, Schuffenecker I, Despres P, Arenzana-Seisdedos F, Michault A, Albert ML, Lecuit M (2008b) A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog 4(2):e29. doi:10.1371/journal.ppat.0040029

    Article  PubMed  Google Scholar 

  • Das T, Jaffar-Bandjee MC, Hoarau JJ, Krejbich Trotot P, Denizot M, Lee-Pat-Yuen G, Sahoo R, Guiraud P, Ramful D, Robin S, Alessandri JL, Gauzere BA, Gasque P (2010) Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus. Prog Neurobiol 91(2):121–129. doi:10.1016/j.pneurobio.2009.12.006

    Article  PubMed  CAS  Google Scholar 

  • Delfraro A, Burgueno A, Morel N, Gonzalez G, Garcia A, Morelli J, Perez W, Chiparelli H, Arbiza J (2011) Fatal human case of Western equine encephalitis, Uruguay. Emerg Infect Dis 17(5):952–954. doi:10.3201/eid1705.101068

    Article  PubMed  Google Scholar 

  • Deresiewicz RL, Thaler SJ, Hsu L, Zamani AA (1997) Clinical and neuroradiographic manifestations of eastern equine encephalitis. N Engl J Med 336(26):1867–1874. doi:10.1056/NEJM199706263362604

    Article  PubMed  CAS  Google Scholar 

  • Detje CN, Meyer T, Schmidt H, Kreuz D, Rose JK, Bechmann I, Prinz M, Kalinke U (2009) Local type I IFN receptor signaling protects against virus spread within the central nervous system. J Immunol 182(4):2297–2304. doi:10.4049/jimmunol.0800596

    Article  PubMed  CAS  Google Scholar 

  • Dhanwani R, Khan M, Alam SI, Rao PV, Parida M (2011) Differential proteome analysis of Chikungunya virus-infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. Proteomics 11(10):1936–1951. doi:10.1002/pmic.201000500

    Article  PubMed  CAS  Google Scholar 

  • Economopoulou A, Dominguez M, Helynck B, Sissoko D, Wichmann O, Quenel P, Germonneau P, Quatresous I (2009) Atypical Chikungunya virus infections: clinical manifestations, mortality and risk factors for severe disease during the 2005-2006 outbreak on Reunion. Epidemiol Infect 137(4):534–541

    Article  PubMed  CAS  Google Scholar 

  • Fazakerley JK, Cotterill CL, Lee G, Graham A (2006) Virus tropism, distribution, persistence and pathology in the corpus callosum of the Semliki Forest virus-infected mouse brain: a novel system to study virus-oligodendrocyte interactions. Neuropathol Appl Neurobiol 32(4):397–409

    Article  PubMed  CAS  Google Scholar 

  • Fritel X, Rollot O, Gerardin P, Gauzere BA, Bideault J, Lagarde L, Dhuime B, Orvain E, Cuillier F, Ramful D, Samperiz S, Jaffar-Bandjee MC, Michault A, Cotte L, Kaminski M, Fourmaintraux A (2010) Chikungunya virus infection during pregnancy, Reunion, France, 2006. Emerg Infect Dis 16(3):418–425. doi:10.3201/eid1603.091403

    Article  PubMed  Google Scholar 

  • Fros JJ, Liu WJ, Prow NA, Geertsema C, Ligtenberg M, Vanlandingham DL, Schnettler E, Vlak JM, Suhrbier A, Khromykh AA, Pijlman GP (2010) Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J Virol 84 (20):10877–10887. doi:10.1128/JVI.00949-10

    Google Scholar 

  • Ganesan K, Diwan A, Shankar SK, Desai SB, Sainani GS, Katrak SM (2008) Chikungunya encephalomyeloradiculitis: report of 2 cases with neuroimaging and 1 case with autopsy findings. AJNR Am J Neuroradiol 29(9):1636–1637

    Article  PubMed  CAS  Google Scholar 

  • Gerardin P, Barau G, Michault A, Bintner M, Randrianaivo H, Choker G, Lenglet Y, Touret Y, Bouveret A, Grivard P, Le Roux K, Blanc S, Schuffenecker I, Couderc T, Arenzana-Seisdedos F, Lecuit M, Robillard PY (2008) Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Reunion. PLoS Med 5(3):e60

    Article  PubMed  Google Scholar 

  • Grandadam M, Caro V, Plumet S, Thiberge JM, Souares Y, Failloux AB, Tolou HJ, Budelot M, Cosserat D, Leparc-Goffart I, Despres P (2011) Chikungunya virus, southeastern France. Emerg Infect Dis 17(5):910–913. doi:10.3201/eid1705.101873

    Article  PubMed  Google Scholar 

  • Griffin DE (2003) Immune responses to RNA-virus infections of the CNS. Nat Rev Immunol 3(6):493–502. doi:10.1038/nri1105, nri1105 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Griffin DE, Johnson RT (1977) Role of the immune response in recovery from Sindbis virus encephalitis in mice. J Immunol 118(3):1070–1075

    PubMed  CAS  Google Scholar 

  • Hahon N, Zimmerman WD (1970) Chikungunya virus infection of cell monolayers by cell-to-cell and extracellular transmission. Appl Microbiol 19(2):389–391

    PubMed  CAS  Google Scholar 

  • Hauwel M, Furon E, Canova C, Griffiths M, Neal J, Gasque P (2005a) Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, “protective” glial stem cells and stromal ependymal cells. Brain Res Brain Res Rev 48(2):220–233

    Article  PubMed  CAS  Google Scholar 

  • Hauwel M, Furon E, Gasque P (2005b) Molecular and cellular insights into the coxsackie-adenovirus receptor: role in cellular interactions in the stem cell niche. Brain Res Brain Res Rev 48(2):265–272

    Article  PubMed  CAS  Google Scholar 

  • Her Z, Malleret B, Chan M, Ong EK, Wong SC, Kwek DJ, Tolou H, Lin RT, Tambyah PA, Renia L, Ng LF (2010) Active infection of human blood monocytes by Chikungunya virus triggers an innate immune response. J Immunol 184(10):5903–5913. doi:10.4049/jimmunol.0904181

    Article  PubMed  CAS  Google Scholar 

  • Hoarau JJ, Jaffar Bandjee MC, Krejbich Trotot P, Das T, Li-Pat-Yuen G, Dassa B, Denizot M, Guichard E, Ribera A, Henni T, Tallet F, Moiton MP, Gauzere BA, Bruniquet S, Jaffar Bandjee Z, Morbidelli P, Martigny G, Jolivet M, Gay F, Grandadam M, Tolou H, Vieillard V, Debre P, Autran B, Gasque P (2010) Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol 184(10):5914–5927. doi:10.4049/jimmunol.0900255

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Morita K, Matias RR, Tuplano JV, Resuello RR, Candelario JR, Cruz DJ, Mapua CA, Hasebe F, Igarashi A, Natividad FF (2003) Distribution of three arbovirus antibodies among monkeys (Macaca fascicularis) in the Philippines. J Med Primatol 32(2):89–94

    Article  PubMed  CAS  Google Scholar 

  • Jackson AC, Moench TR, Griffin DE, Johnson RT (1987) The pathogenesis of spinal cord involvement in the encephalomyelitis of mice caused by neuroadapted Sindbis virus infection. Lab Invest 56(4):418–423

    PubMed  CAS  Google Scholar 

  • Jackson AC, Moench TR, Trapp BD, Griffin DE (1988) Basis of neurovirulence in Sindbis virus encephalomyelitis of mice. Lab Invest 58(5):503–509

    PubMed  CAS  Google Scholar 

  • Jaffar-Bandjee MC, Das T, Hoarau JJ, Krejbich Trotot P, Denizot M, Ribera A, Roques P, Gasque P (2009) Chikungunya virus takes centre stage in virally induced arthritis: possible cellular and molecular mechanisms to pathogenesis. Microbes Infect 11(14–15):1206–1218. doi:10.1016/j.micinf.2009.10.001

    Article  PubMed  CAS  Google Scholar 

  • Jaffar-Bandjee MC, Ramful D, Gauzere BA, Hoarau JJ, Krejbich-Trotot P, Robin S, Ribera A, Selambarom J, Gasque P (2010) Emergence and clinical insights into the pathology of Chikungunya virus infection. Expert Rev Anti Infect Ther 8(9):987–996. doi:10.1586/eri.10.92

    Article  PubMed  Google Scholar 

  • Johnson RT (1965) Virus invasion of the central nervous system: a study of sindbis virus infection in the mouse using fluorescent antibody. Am J Pathol 46:929–943

    PubMed  CAS  Google Scholar 

  • Krejbich-Trotot P, Denizot M, Hoarau JJ, Jaffar-Bandjee MC, Das T, Gasque P (2011a) Chikungunya virus mobilizes the apoptotic machinery to invade host cell defenses. FASEB J 25(1):314–325. doi:10.1096/fj.10-164178

    Article  PubMed  CAS  Google Scholar 

  • Krejbich-Trotot P, Gay B, Li-Pat-Yuen G, Hoarau JJ, Jaffar-Bandjee MC, Briant L, Gasque P, Denizot M (2011b) Chikungunya triggers an autophagic process which promotes viral replication. Virol J 8(1):432. doi:10.1186/1743-422X-8-432

    Article  PubMed  CAS  Google Scholar 

  • Kuss SK, Etheredge CA, Pfeiffer JK (2008) Multiple host barriers restrict poliovirus trafficking in mice. PLoS Pathog 4(6):e1000082. doi:10.1371/journal.ppat.1000082

    Article  PubMed  Google Scholar 

  • Labadie K, Larcher T, Joubert C, Mannioui A, Delache B, Brochard P, Guigand L, Dubreil L, Lebon P, Verrier B, de Lamballerie X, Suhrbier A, Cherel Y, Le Grand R, Roques P (2010) Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest 120(3):894–906. doi:10.1172/JCI40104

    Article  PubMed  CAS  Google Scholar 

  • Le Bomin A, Hebert JC, Marty P, Delaunay P (2008) [Confirmed chikungunya in children in Mayotte. Description of 50 patients hospitalized from February to June 2006]. Med Trop (Mars) 68 (5):491–495

    Google Scholar 

  • Lebrun G, Chadda K, Reboux AH, Martinet O, Gauzere BA (2009) Guillain-Barre syndrome after chikungunya infection. Emerg Infect Dis 15(3):495–496

    Article  PubMed  Google Scholar 

  • Lemant J, Boisson V, Winer A, Thibault L, Andre H, Tixier F, Lemercier M, Antok E, Cresta MP, Grivard P, Besnard M, Rollot O, Favier F, Huerre M, Campinos JL, Michault A (2008) Serious acute chikungunya virus infection requiring intensive care during the Reunion Island outbreak in 2005-2006. Crit Care Med 36(9):2536–2541

    Article  PubMed  Google Scholar 

  • Levine B, Huang Q, Isaacs JT, Reed JC, Griffin DE, Hardwick JM (1993) Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature 361(6414):739–742. doi:10.1038/361739a0

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Goldman JE, Jiang HH, Griffin DE, Hardwick JM (1996) Bc1-2 protects mice against fatal alphavirus encephalitis. Proc Natl Acad Sci USA 93(10):4810–4815

    Article  PubMed  CAS  Google Scholar 

  • Levitt NH, Ramsburg HH, Hasty SE, Repik PM, Cole FE Jr, Lupton HW (1986) Development of an attenuated strain of chikungunya virus for use in vaccine production. Vaccine 4(3):157–162

    Article  PubMed  CAS  Google Scholar 

  • Lewthwaite P, Vasanthapuram R, Osborne JC, Begum A, Plank JL, Shankar MV, Hewson R, Desai A, Beeching NJ, Ravikumar R, Solomon T (2009) Chikungunya virus and central nervous system infections in children, India. Emerg Infect Dis 15(2):329–331

    Article  PubMed  Google Scholar 

  • Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5(2):133–139. doi:10.1038/ni1033

    Article  PubMed  CAS  Google Scholar 

  • Mims CA, Murphy FA, Taylor WP, Marshall ID (1973) Pathogenesis of Ross River virus infection in mice. I. Ependymal infection, cortical thinning, and hydrocephalus. J Infect Dis 127(2):121–128

    Article  PubMed  CAS  Google Scholar 

  • Mittal A, Mittal S, Bharati MJ, Ramakrishnan R, Saravanan S, Sathe PS (2007) Optic neuritis associated with chikungunya virus infection in South India. Arch Ophthalmol 125(10):1381–1386. doi:10.1001/archopht.125.10.1381

    Article  PubMed  Google Scholar 

  • Mori I, Nishiyama Y, Yokochi T, Kimura Y (2005) Olfactory transmission of neurotropic viruses. J Neurovirol 11(2):129–137. doi:G427587604635V16[pii], 10.1080/13550280590922793

    Article  PubMed  Google Scholar 

  • Nava VE, Rosen A, Veliuona MA, Clem RJ, Levine B, Hardwick JM (1998) Sindbis virus induces apoptosis through a caspase-dependent, CrmA-sensitive pathway. J Virol 72(1):452–459

    PubMed  CAS  Google Scholar 

  • Ng LC, Hapuarachchi HC (2010) Tracing the path of Chikungunya virus—evolution and adaptation. Infect Genet Evol 10(7):876–885. doi:10.1016/j.meegid.2010.07.012

    Article  PubMed  Google Scholar 

  • Nottet HS, Persidsky Y, Sasseville VG, Nukuna AN, Bock P, Zhai QH, Sharer LR, McComb RD, Swindells S, Soderland C, Gendelman HE (1996) Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol 156(3):1284–1295

    PubMed  CAS  Google Scholar 

  • Ozden S, Huerre M, Riviere JP, Coffey LL, Afonso PV, Mouly V, de Monredon J, Roger JC, El Amrani M, Yvin JL, Jaffar MC, Frenkiel MP, Sourisseau M, Schwartz O, Butler-Browne G, Despres P, Gessain A, Ceccaldi PE (2007) Human muscle satellite cells as targets of Chikungunya virus infection. PLoS One 2(6):e527

    Article  PubMed  Google Scholar 

  • Peiris JS, Dittus WP, Ratnayake CB (1993) Seroepidemiology of dengue and other arboviruses in a natural population of toque macaques (Macaca sinica) at Polonnaruwa, Sri Lanka. J Med Primatol 22(4):240–245

    PubMed  CAS  Google Scholar 

  • Pialoux G, Gauzere BA, Jaureguiberry S, Strobel M (2007) Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 7(5):319–327

    Article  PubMed  Google Scholar 

  • Powers AM, Logue CH (2007) Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 88(Pt 9):2363–2377

    Article  PubMed  CAS  Google Scholar 

  • Precious SW, Webb HE, Bowen ET (1974) Isolation and persistence of Chikungunya virus in cultures of mouse brain cells. J Gen Virol 23(3):271–279

    Article  PubMed  CAS  Google Scholar 

  • Ramful D, Carbonnier M, Pasquet M, Bouhmani B, Ghazouani J, Noormahomed T, Beullier G, Attali T, Samperiz S, Fourmaintraux A, Alessandri JL (2007) Mother-to-child transmission of Chikungunya virus infection. Pediatr Infect Dis J 26(9):811–815

    Article  PubMed  Google Scholar 

  • Rampal SM, Meena H (2007) Neurological complications in Chikungunya fever. J Assoc Physicians India 55:765–769

    PubMed  CAS  Google Scholar 

  • Reed DS, Larsen T, Sullivan LJ, Lind CM, Lackemeyer MG, Pratt WD, Parker MD (2005) Aerosol exposure to western equine encephalitis virus causes fever and encephalitis in cynomolgus macaques. J Infect Dis 192(7):1173–1182. doi:JID34552[pii], 10.1086/444397

    Article  PubMed  Google Scholar 

  • Robin S, Ramful D, Le Seach F, Jaffar-Bandjee MC, Rigou G, Alessandri JL (2008) Neurologic manifestations of pediatric chikungunya infection. J Child Neurol 23(9):1028–1035

    Article  PubMed  Google Scholar 

  • Robinson MC (1955) An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53 I. Clinical features. Trans R Soc Trop Med Hyg 49(1):28–32

    Article  PubMed  CAS  Google Scholar 

  • Rosenstiel P, Derer S, Till A, Hasler R, Eberstein H, Bewig B, Nikolaus S, Nebel A, Schreiber S (2008) Systematic expression profiling of innate immune genes defines a complex pattern of immunosenescence in peripheral and intestinal leukocytes. Genes Immun 9(2):103–114. doi:10.1038/sj.gene.6364454

    Article  PubMed  CAS  Google Scholar 

  • Ryman KD, Klimstra WB (2008) Host responses to alphavirus infection. Immunol Rev 225:27–45. doi:10.1111/j.1600-065X.2008.00670.x

    Article  PubMed  CAS  Google Scholar 

  • Samperiz E, Gerardin P, Noormahomed T, Beullir G, Boya I (2007) Transmission perinatale du virus chikungunya, à propos de 47 cas à l'ïle de la Réunion. Bull Soc Pathol Exot Filiales 100:355

    Google Scholar 

  • Schafer A, Brooke CB, Whitmore AC, Johnston RE (2011) The role of the blood-brain barrier during Venezuelan equine encephalitis virus infection. J Virol 85(20):10682–10690. doi:10.1128/JVI.05032-11

    Article  PubMed  CAS  Google Scholar 

  • Schilte C, Couderc T, Chretien F, Sourisseau M, Gangneux N, Guivel-Benhassine F, Kraxner A, Tschopp J, Higgs S, Michault A, Arenzana-Seisdedos F, Colonna M, Peduto L, Schwartz O, Lecuit M, Albert ML (2010) Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J Exp Med 207(2):429–442. doi:10.1084/jem.20090851

    Article  PubMed  CAS  Google Scholar 

  • Schmid D, Munz C (2007) Innate and adaptive immunity through autophagy. Immunity 27(1):11–21. doi:10.1016/j.immuni.2007.07.004

    Article  PubMed  CAS  Google Scholar 

  • Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, Lavenir R, Pardigon N, Reynes JM, Pettinelli F, Biscornet L, Diancourt L, Michel S, Duquerroy S, Guigon G, Frenkiel MP, Brehin AC, Cubito N, Despres P, Kunst F, Rey FA, Zeller H, Brisse S (2006) Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3(7):e263

    Article  PubMed  Google Scholar 

  • Schwartz O, Albert ML (2010) Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol 8(7):491–500. doi:10.1038/nrmicro2368

    Article  PubMed  CAS  Google Scholar 

  • Simon F, Javelle E, Oliver M, Leparc-Goffart I, Marimoutou C (2011) Chikungunya virus infection. Curr Infect Dis Rep 13(3):218–228. doi:10.1007/s11908-011-0180-1

    Article  PubMed  Google Scholar 

  • Sissoko D, Malvy D, Ezzedine K, Renault P, Moscetti F, Ledrans M, Pierre V (2009) Post-epidemic Chikungunya disease on Reunion Island: course of rheumatic manifestations and associated factors over a 15-month period. PLoS Negl Trop Dis 3(3):e389. doi:10.1371/journal.pntd.0000389

    Article  PubMed  Google Scholar 

  • Solignat M, Gay B, Higgs S, Briant L, Devaux C (2009) Replication cycle of chikungunya: a re-emerging arbovirus. Virology 393(2):183–197. doi:10.1016/j.virol.2009.07.024

    Article  PubMed  CAS  Google Scholar 

  • Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D, Sol-Foulon N, Le Roux K, Prevost MC, Fsihi H, Frenkiel MP, Blanchet F, Afonso PV, Ceccaldi PE, Ozden S, Gessain A, Schuffenecker I, Verhasselt B, Zamborlini A, Saib A, Rey FA, Arenzana-Seisdedos F, Despres P, Michault A, Albert ML, Schwartz O (2007a) Characterization of reemerging chikungunya virus. PLoS Pathog 3(6):e89. doi:10.1371/journal.ppat.0030089

    Article  PubMed  Google Scholar 

  • Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D, Sol-Foulon N, Le Roux K, Prevost MC, Fsihi H, Frenkiel MP, Blanchet F, Afonso PV, Ceccaldi PE, Ozden S, Gessain A, Schuffenecker I, Verhasselt B, Zamborlini A, Saib A, Rey FA, Arenzana-Seisdedos F, Despres P, Michault A, Albert ML, Schwartz O (2007b) Characterization of reemerging chikungunya virus. PLoS Pathog 3(6):e89

    Article  PubMed  Google Scholar 

  • Steele KE, Twenhafel NA (2010) Review paper: pathology of animal models of alphavirus encephalitis. Vet Pathol 47(5):790–805. doi:0300985810372508[pii], 10.1177/0300985810372508

    Article  PubMed  CAS  Google Scholar 

  • Suhrbier A, La Linn M (2004) Clinical and pathologic aspects of arthritis due to Ross River virus and other alphaviruses. Curr Opin Rheumatol 16(4):374–379

    Article  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2007) Recognition of viruses by innate immunity. Immunol Rev 220:214–224. doi:10.1111/j.1600-065X.2007.00562.x

    Article  PubMed  CAS  Google Scholar 

  • Tandale BV, Sathe PS, Arankalle VA, Wadia RS, Kulkarni R, Shah SV, Shah SK, Sheth JK, Sudeep AB, Tripathy AS, Mishra AC (2009) Systemic involvements and fatalities during Chikungunya epidemic in India, 2006. J Clin Virol 46:145–149

    Article  PubMed  Google Scholar 

  • Thach DC, Kimura T, Griffin DE (2000) Differences between C57BL/6 and BALB/cBy mice in mortality and virus replication after intranasal infection with neuroadapted Sindbis virus. J Virol 74(13):6156–6161

    Article  PubMed  CAS  Google Scholar 

  • Tirabassi RS, Townley RA, Eldridge MG, Enquist LW (1998) Molecular mechanisms of neurotropic herpesvirus invasion and spread in the CNS. Neurosci Biobehav Rev 22(6):709–720. doi:S0149763498000098[pii]

    Article  PubMed  CAS  Google Scholar 

  • Tournebize P, Charlin C, Lagrange M (2009) Neurological manifestations in Chikungunya: about 23 cases collected in Reunion Island. Rev Neurol (Paris) 165(1):48–51

    Article  CAS  Google Scholar 

  • van den Pol AN (2006) Viral infections in the developing and mature brain. Trends Neurosci 29(7):398–406. doi:10.1016/j.tins.2006.06.002

    Article  PubMed  Google Scholar 

  • Vierboom MP, Jonker M, Tak PP, t Hart BA (2007) Preclinical models of arthritic disease in non-human primates. Drug Discov Today 12(7–8):327–335. doi:10.1016/j.drudis.2007.02.012

    Article  PubMed  CAS  Google Scholar 

  • Wang E, Volkova E, Adams AP, Forrester N, Xiao SY, Frolov I, Weaver SC (2008) Chimeric alphavirus vaccine candidates for chikungunya. Vaccine 26(39):5030–5039

    Article  PubMed  CAS  Google Scholar 

  • Werneke SW, Schilte C, Rohatgi A, Monte KJ, Michault A, Arenzana-Seisdedos F, Vanlandingham DL, Higgs S, Fontanet A, Albert ML, Lenschow DJ (2011) ISG15 is critical in the control of Chikungunya virus infection independent of UbE1L mediated conjugation. PLoS Pathog 7(10):e1002322. doi:10.1371/journal.ppat.1002322

    Article  PubMed  CAS  Google Scholar 

  • Wesselingh SL, Levine B, Fox RJ, Choi S, Griffin DE (1994) Intracerebral cytokine mRNA expression during fatal and nonfatal alphavirus encephalitis suggests a predominant type 2T cell response. J Immunol 152(3):1289–1297

    PubMed  CAS  Google Scholar 

  • White LK, Sali T, Alvarado D, Gatti E, Pierre P, Streblow D, Defilippis VR (2011) Chikungunya virus induces IPS-1-dependent innate immune activation and protein kinase R-independent translational shutoff. J Virol 85(1):606–620. doi:10.1128/JVI.00767-10

    Article  PubMed  CAS  Google Scholar 

  • Wielanek AC, Monredon JD, Amrani ME, Roger JC, Serveaux JP (2007) Guillain-Barre syndrome complicating a Chikungunya virus infection. Neurology 69(22):2105–2107

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H, Paulus W (2010) Choroid plexus: biology and pathology. Acta Neuropathol 119(1):75–88. doi:10.1007/s00401-009-0627-8

    Article  PubMed  Google Scholar 

  • Zacks MA, Paessler S (2010) Encephalitic alphaviruses. Vet Microbiol 140(3–4):281–286. doi:S0378-1135(09)00395-2[pii], 10.1016/j.vetmic.2009.08.023

    Article  PubMed  CAS  Google Scholar 

  • Ziegler SA, Lu L, da Rosa AP, Xiao SY, Tesh RB (2008) An animal model for studying the pathogenesis of chikungunya virus infection. Am J Trop Med Hyg 79(1):133–139

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by CPER/FEDER and ICRES PCRD7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Gasque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Gasque, P. (2013). Chikungunya Virus Infection. In: Jackson, A. (eds) Viral Infections of the Human Nervous System. Birkhäuser Advances in Infectious Diseases. Springer, Basel. https://doi.org/10.1007/978-3-0348-0425-7_12

Download citation

Publish with us

Policies and ethics