Abstract
We investigate the relation between the symmetries of a SchrÖdinger operator and the related topological quantum numbers.W e show that, under suitable assumptions on the symmetry algebra, a generalization of the Bloch- Floquet transform induces a direct integral decomposition of the algebra of observables.More relevantly, we prove that the generalized transform selects uniquely the set of “continuous sections” in the direct integral decomposition, thus yielding a Hilbert bundle.T he proof is constructive and provides an explicit description of the fibers.Th e emerging geometric structure is a rigorous framework for a subsequent analysis of some topological invariants of the operator, to be developed elsewhere [DFP12].T wo running examples provide an Ariadne’s thread through the paper.F or the sake of completeness, we begin by reviewing two related classical theorems by von Neumann and Maurin.
Keywords
- Topological quantum numbers
- spectral decomposition
- Bloch-Floquet transform
- Hilbert bundle
Mathematics Subject Classification (2000). 81Q70, 46L08, 46L45, 57R22.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
J.E. Avron. Colored Hofstadter butterflies. Multiscale Methods in Quantum Mechanics: Theory and Experiments. Birkhäuser, 2004.
F.P. Boca. Rotations C *-algebras and almost Mathieu operators. Theta Foundation, 2001.
O. Bratteli and D.W. Robinson. C * - and W *-Algebras, Symmetry Groups, Decomposition of States, volume I of Operator Algebras and Quantum Statistical Mechanics. Springer-Verlag, 1987.
H. Brézis. Analyse fonctionnelle, Théorie et Application. Masson, 1987.
J.V. Bellissard, H. Schulz-Baldes, and A. van Elst. The Non Commutative Geometry of the Quantum Hall Effect. J. Math. Phys., 35: 5373-5471, 1994.
G. Choquet. Topology. Academic Press, 1966.
K.R. Davidson. C *-Algebras by Example. American Mathematical Society, 1996.
J. Dixmier and A. Douady. Champs continus d’espaces hilbertiens et de C * - algebres. Bull. Soc. math. France, 91: 227-284, 1963.
G. De Nittis, F. Faure, and G. Panati. Colored Hofstadter butterflies and duality of vector bundles. Available as preprint at www.arxiv.org , 2012.
J. Dixmier. von Neumann Algebras. North-Holland, 1981.
J. Dixmier. C*-Algebras. North-Holland, 1982.
G. De Nittis and G. Landi. Generalized tknn equations. Available as preprint at http://arxiv.org/abs/1104.1214 , 2011.
G. De Nittis and G. Panati. Effective models for conductance in magnetic fields: derivation of Harper and Hofstadter models. Available as preprint at http://arxiv.org/abs/1007.4786 , 2010.
J.M.G. Fell and R.S. Doran. Basic Representation Theory of Groups and Algebras, volume 1 of Representation of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles. Academic Press Inc., 1988.
M.J. Gruber. Non-commutative Bloch theory. J. Math. Phys., 42: 2438-2465, 2001.
J.M. Gracia-Bondia, J.C. Várilly, and H. Figueroa. Elements of Noncommutative Geometry. Birkhäuser, 2001.
L. Hörmander. Complex Analysis in Several Variables. North-Holland, 1990.
P. Kuchment. Floquet Theory for Partial Differential Equations. Operator Theory: Advances and Applications. Birkhäuser, 1993.
S. Lang. Differential Manifolds. Springer, 1985.
G. Landi. An Introduction to Noncommutative Spaces and their Geometries. Lecture Notes in Physics. Springer, 1997.
K. Maurin. General Eigenfunction Expansions and Unitary Representations of Topological Groups. PWN, 1968.
B. Sz. Nagy and C. Foias. Harmonic Analysis of Operators on Hilbert Space. American Elsevier. North-Holland, 1970.
D. Osadchy and J.E. Avron. Hofstadter butterfly as quantum phase diagram. J. Math. Phys., 42: 5665-5671, 2001.
G. Panati. Triviality of Bloch and Bloch-Dirac bundles. Ann. Henri Poincaré, 8: 995-1011, 2007.
W. Rudin. Fourier Analysis on Groups. Number 12 in Interscience Tracts in Pure and Applied Mathematics. Interscience, 1962.
[Rud87] W. Rudin. Real and Complex Analysis. McGraw-Hill, 1987.
Y.S. Samoilenko. Spectral Theory of Families of Self-Adjoint Operators. Mathematics and Its Applications. Kluwer, 1991.
F. Treves. Topological vector spaces, distributions and kernels. Academic Press, 1967.
K. von Klitzing, G. Dorda, and M. Pepper. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Phys. Rev. Lett., 45: 494-497, 1980.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Basel
About this paper
Cite this paper
De Nittis, G., Panati, G. (2012). The Topological Bloch-Floquet Transform and Some Applications. In: Benguria, R., Friedman, E., Mantoiu, M. (eds) Spectral Analysis of Quantum Hamiltonians. Operator Theory: Advances and Applications, vol 224. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0414-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-0348-0414-1_5
Published:
Publisher Name: Birkhäuser, Basel
Print ISBN: 978-3-0348-0413-4
Online ISBN: 978-3-0348-0414-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)