Advertisement

Parenthetic Remarks

  • Ross StreetEmail author
Chapter
Part of the Progress in Mathematics book series (PM, volume 299)

Abstract

The Tamari lattice provides an example of a (non-symmetric) operad. We discuss such operads and their associated monads and monoidal categories. Freeness is an important aspect. The free structures are described in various ways using wellformed words (in the spirit of some of Tamari’s papers), using string diagrams leading to forests, and in terms of rewrite rules.

Keywords

Monoidal Category Left Adjoint Monoidal Structure Monoidal Functor Polynomial Functor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Baez and J. Dolan, “Higher-dimensional algebra. III. n-categories and the algebra of opetopes”, Adv. Math. 135 (1998) 145–206.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    M.A. Batanin, “On the definition of weak ω-category”, Macquarie Math. Report no. 96/207, Macquarie University, NSW Australia (1996).Google Scholar
  3. 3.
    M.A. Batanin, “Monoidal globular categories as a natural environment for the theory of weak n-categories”, Adv. Math. 136 (1998) 39–103.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    M.A. Batanin, “Homotopy coherent category theory and A∞-structures in monoidal categories”, J. PureAppl. Algebra 123 (1998) 67–103.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    J. Beck, “Distributive laws”, in Seminar on Triples and Categorical Homology Theory (ETH Zürich, 1966/67), B. Eckmann, ed., Lecture Notes in Mathematics, vol. 80, Springer, Berlin, 1969, 119-140. Reprinted in Reprints in Theory and Applications of Categories, no. 18 (2008) 95–112, http://tac.mta.ca/tac/reprints/articles/18/tr18.pdf.
  6. 6.
    J. Bénabou, “Some remarks on free monoids in a topos”, in Category theory (Como, Italy, 1990), A. Carboni, M.C. Pedicchio and G. Rosolini, eds., Lecture Notes in Mathematics, vol. 1488, Springer, Berlin, 1991, 20–29.Google Scholar
  7. 7.
    J.M. Boardman and R.M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, vol. 347, Springer, Berlin-New York, 1973.Google Scholar
  8. 8.
    S. Eilenberg and J.C. Moore, “Adjoint functors and triples”, Illinois J. Math. 9 (1965) 381–398.MathSciNetzbMATHGoogle Scholar
  9. 9.
    N. Gambino and J. Kock, “Polynomial functors and polynomial monads”, arxiv.org/abs/0906.4931.
  10. 10.
    A. Joyal, “Foncteurs analytiques et espèces de structures”, in Combinatoire énumérative (Montreal, Canada, 1985), G. Labelle and P. Leroux, eds., Lecture Notes in Mathematics, vol. 1234, Springer, Berlin, 1986, 126–159.Google Scholar
  11. 11.
    A. Joyal and R. Street, “The geometry of tensor calculus. I”, Adv. Math. 88 (1991) 55-112.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    G.M. Kelly, “An abstract approach to coherence”, in Coherence in Categories, G.M. Kelly, M. Laplaza, G. Lewis and S. Mac Lane, eds., Lecture Notes in Mathematics, vol. 281, Springer, Berlin, 1972, 106–147.Google Scholar
  13. 13.
    G.M. Kelly, “A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on”, Bull. Austral. Math. Soc. 22 (1980) 1–83.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    G.M. Kelly, “On clubs and data-type constructors”, in Applications of Categories in Computer Science (Durham, UK, 1991), M.P. Fourman, P.T. Johnstone and A.M. Pitts, eds., London Math. Soc. Lecture Note Ser., vol. 177, Cambridge Univ. Press, Cambridge, 1992, 163–190.Google Scholar
  15. 15.
    G.M. Kelly, “On the operads of J.P. May”, Reprints in Theory and Applications of Categories, no. 13 (2005) 1–13, http://tac.mta.ca/tac/reprints/articles/13/tr13.pdf.
  16. 16.
    J.P. May, The Geometry of Iterated Loop Spaces, Lecture Notes in Mathematics, vol. 271, Springer, 1972.Google Scholar
  17. 17.
    S.H. Schanuel, “Negative sets have Euler characteristic and dimension”, in Category theory (Como, Italy, 1990), A. Carboni, M.C. Pedicchio and G. Rosolini, eds., Lecture Notes in Mathematics, vol. 1488, Springer, Berlin, 1991, 379–385.Google Scholar
  18. 18.
    N.J.A. Sloane, A Handbook of Integer Sequences, Academic Press, New York, 1973.Google Scholar
  19. 19.
    J.D. Stasheff, “Homotopy associativity of H-spaces, I”, Trans. Amer. Math. Soc. 108 (1963) 275–292.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    R. Street, “The algebra of oriented simplexes”, J. Pure Appl. Algebra 49 (1987) 283–335.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    R. Street, “Categorical structures”, in Handbook of Algebra, vol. 1, M. Hazewinkel, ed., Elsevier Science B.V., Amsterdam, 1996, 529–577.Google Scholar
  22. 22.
    D. Tamari, “Le problèmes d’associativité des monoïdes et le problème des mots pour les demi-groupes; algèbres partielles et chaînes élémentaires”, Séminaire Dubreil-Pisot (Algèbre et Théorie des nombres) 24 (1970/71) 1–15.Google Scholar
  23. 23.
    D. Tamari, “Formulae for well formed formulae and their enumeration”, J. Austral. Math. Soc. 17 (1974) 154–162 (Collection of articles dedicated to the memory of Hanna Neumann).Google Scholar
  24. 24.
    T. Trimble, “Thoughts on weak n-categories”, undated typed notes.Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Centre of Australian Category TheoryMacquarie UniversityMacquarieAustralia

Personalised recommendations