Skip to main content

Development of Retroviral and Lentiviral Vectors

  • Chapter
  • First Online:
  • 1887 Accesses

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

Abstract

Gene vectors based on human immunodeficiency virus 1 (HIV-1) are becoming popularly used as gene carriers. HIV-1 lentivectors have recently been used in two gene therapy clinical trials for the correction of β-thalassaemia and X-linked adrenoleukodystrophy. The process of transforming a deadly human pathogen such as HIV into a successful therapeutic tool would not be possible without thorough scientific investigation into the development of γ-retrovirus vectors. In this chapter, we briefly recapitulate the major scientific steps that have led to the development of γ-retrovirus and lentivirus vectors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hanafusa H, Hanafusa T, Rubin H (1963) The defectiveness of Rous sarcoma virus. Proc Natl Acad Sci U S A 49:572–580

    Article  PubMed  CAS  Google Scholar 

  2. Kamine J, Buchanan JM (1977) Cell-free synthesis of two proteins unique to RNA of transforming virions of Rous sarcoma virus. Proc Natl Acad Sci U S A 74(5):2011–2015

    Article  PubMed  CAS  Google Scholar 

  3. Rapp UR, Todaro C (1978) Generation of new mouse sarcoma viruses in cell culture. Science 201(4358):821–824

    Article  PubMed  CAS  Google Scholar 

  4. Ellis RW, Defeo D, Shih TY, Gonda MA, Young HA, Tsuchida N, Lowy DR, Scolnick EM (1981) The p21 src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes. Nature 292(5823):506–511

    Article  PubMed  CAS  Google Scholar 

  5. Vennstrom B, Bishop JM (1982) Isolation and characterization of chicken DNA homologous to the two putative oncogenes of avian erythroblastosis virus. Cell 28(1):135–143

    Article  PubMed  CAS  Google Scholar 

  6. Vennstrom B, Sheiness D, Zabielski J, Bishop JM (1982) Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol 42(3):773–779

    PubMed  CAS  Google Scholar 

  7. Parada LF, Tabin CJ, Shih C, Weinberg RA (1982) Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297(5866):474–478

    Article  PubMed  CAS  Google Scholar 

  8. Dalla-Favera R, Gelmann EP, Martinotti S, Franchini G, Papas TS, Gallo RC, Wong-Staal F (1982) Cloning and characterization of different human sequences related to the onc gene (v-myc) of avian myelocytomatosis virus (MC29). Proc Natl Acad Sci U S A 79(21):6497–6501

    Article  PubMed  CAS  Google Scholar 

  9. Goff SP, D’Eustachio P, Ruddle FH, Baltimore D (1982) Chromosomal assignment of the endogenous proto-oncogene C-abl. Science 218(4579):1317–1319

    Article  PubMed  CAS  Google Scholar 

  10. Chen IS, Wilhelmsen KC, Temin HM (1983) Structure and expression of c-rel, the cellular homolog to the oncogene of reticuloendotheliosis virus strain T. J Virol 45(1):104–113

    PubMed  CAS  Google Scholar 

  11. Klempnauer KH, Ramsay G, Bishop JM, Moscovici MG, Moscovici C, McGrath JP, Levinson AD (1983) The product of the retroviral transforming gene v-myb is a truncated version of the protein encoded by the cellular oncogene c-myb. Cell 33(2):345–355

    Article  PubMed  CAS  Google Scholar 

  12. Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, Reynolds FH Jr, Stephenson JR (1983) Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci U S A 80(14):4218–4222

    Article  PubMed  CAS  Google Scholar 

  13. Franchini G, Gurgo C, Guo HG, Gallo RC, Collalti E, Fargnoli KA, Hall LF, Wong-Staal F, Reitz MS Jr (1987) Sequence of simian immunodeficiency virus and its relationship to the human immunodeficiency viruses. Nature 328(6130):539–543

    Article  PubMed  CAS  Google Scholar 

  14. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vezinet-Brun F, Rouzioux C, Rozenbaum W, Montagnier L (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220(4599):868–871

    Article  PubMed  CAS  Google Scholar 

  15. Popovic M, Sarngadharan MG, Read E, Gallo RC (1984) Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224(4648):497–500

    Article  PubMed  CAS  Google Scholar 

  16. Clavel F, Guetard D, Brun-Vezinet F, Chamaret S, Rey MA, Santos-Ferreira MO, Laurent AG, Dauguet C, Katlama C, Rouzioux C et al (1986) Isolation of a new human retrovirus from West African patients with AIDS. Science 233(4761):343–346

    Article  PubMed  CAS  Google Scholar 

  17. Clavel F, Mansinho K, Chamaret S, Guetard D, Favier V, Nina J, Santos-Ferreira MO, Champalimaud JL, Montagnier L (1987) Human immunodeficiency virus type 2 infection associated with AIDS in West Africa. N Engl J Med 316(19):1180–1185

    Article  PubMed  CAS  Google Scholar 

  18. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, Schneider T, Hofmann J, Kucherer C, Blau O, Blau IW, Hofmann WK, Thiel E (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360(7):692–698

    Article  PubMed  Google Scholar 

  19. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R, Maouche-Chretien L, Bernaudin F, Girot R, Dorazio R, Mulder GJ, Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chretien S, Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F, Hacein-Bey-Abina S, Leboulch P (2010) Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia; 1476–4687 (Electronic) 0028-0836 (Linking); Sept 16 2010, pp 318–322

    Google Scholar 

  20. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L, Mahlaoui N, Kiermer V, Mittelstaedt D, Bellesme C, Lahlou N, Lefrere F, Blanche S, Audit M, Payen E, Leboulch P, l’Homme B, Bougneres P, Von Kalle C, Fischer A, Cavazzana-Calvo M, Aubourg P (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326(5954):818–823

    Article  PubMed  CAS  Google Scholar 

  21. Vogt VM, Simon MN (1999) Mass determination of rous sarcoma virus virions by scanning transmission electron microscopy. J Virol 73(8):7050–7055

    PubMed  CAS  Google Scholar 

  22. Katz RA, Skalka AM (1994) The retroviral enzymes. Annu Rev Biochem 63:133–173

    Article  PubMed  CAS  Google Scholar 

  23. Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE (1988) Characterization of ribosomal frameshifting in HIV-1 gag–pol expression. Nature 331(6153):280–283

    Article  PubMed  CAS  Google Scholar 

  24. Herschhorn A, Hizi A (2010) Retroviral reverse transcriptases. Cell Mol Life Sci 67(16):2717–2747

    Article  PubMed  CAS  Google Scholar 

  25. Gilboa E, Mitra SW, Goff S, Baltimore D (1979) A detailed model of reverse transcription and tests of crucial aspects. Cell 18(1):93–100

    Article  PubMed  CAS  Google Scholar 

  26. Watanabe S, Temin HM (1982) Encapsidation sequences for spleen necrosis virus, an avian retrovirus, are between the 5′ long terminal repeat and the start of the gag gene. Proc Natl Acad Sci U S A 79(19):5986–5990

    Article  PubMed  CAS  Google Scholar 

  27. Charneau P, Alizon M, Clavel F (1992) A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J Virol 66(5):2814–2820

    PubMed  CAS  Google Scholar 

  28. Rattray AJ, Champoux JJ (1989) Plus-strand priming by Moloney murine leukemia virus. The sequence features important for cleavage by RNase H. J Mol Biol 208(3):445–456

    Article  PubMed  CAS  Google Scholar 

  29. Frankel AD, Young JA (1998) HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 67:1–25

    Article  PubMed  CAS  Google Scholar 

  30. Rimsky L, Hauber J, Dukovich M, Malim MH, Langlois A, Cullen BR, Greene WC (1988) Functional replacement of the HIV-1 rev protein by the HTLV-1 rex protein. Nature 335(6192):738–740

    Article  PubMed  CAS  Google Scholar 

  31. Younis I, Green PL (2005) The human T-cell leukemia virus Rex protein. Front Biosci 10:431–445

    Article  PubMed  CAS  Google Scholar 

  32. Boxus M, Twizere JC, Legros S, Dewulf JF, Kettmann R, Willems L (2008) The HTLV-1 Tax interactome. Retrovirology 5:76

    Article  PubMed  Google Scholar 

  33. Briggs JA, Grunewald K, Glass B, Forster F, Krausslich HG, Fuller SD (2006) The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions. Structure 14(1):15–20

    Article  PubMed  CAS  Google Scholar 

  34. Briggs JA, Johnson MC, Simon MN, Fuller SD, Vogt VM (2006) Cryo-electron microscopy reveals conserved and divergent features of gag packing in immature particles of Rous sarcoma virus and human immunodeficiency virus. J Mol Biol 355(1):157–168

    Article  PubMed  CAS  Google Scholar 

  35. Briggs JA, Wilk T, Welker R, Krausslich HG, Fuller SD (2003) Structural organization of authentic, mature HIV-1 virions and cores. EMBO J 22(7):1707–1715

    Article  PubMed  CAS  Google Scholar 

  36. Wang H, Kavanaugh MP, North RA, Kabat D (1991) Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature 352(6337):729–731

    Article  PubMed  CAS  Google Scholar 

  37. Fisher RA, Bertonis JM, Meier W, Johnson VA, Costopoulos DS, Liu T, Tizard R, Walker BD, Hirsch MS, Schooley RT et al (1988) HIV infection is blocked in vitro by recombinant soluble CD4. Nature 331(6151):76–78

    Article  PubMed  CAS  Google Scholar 

  38. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593):722–725

    Article  PubMed  CAS  Google Scholar 

  39. Zaitseva M, Blauvelt A, Lee S, Lapham CK, Klaus-Kovtun V, Mostowski H, Manischewitz J, Golding H (1997) Expression and function of CCR5 and CXCR4 on human Langerhans cells and macrophages: implications for HIV primary infection. Nat Med 3(12):1369–1375

    Article  PubMed  CAS  Google Scholar 

  40. Earp LJ, Delos SE, Park HE, White JM (2005) The many mechanisms of viral membrane fusion proteins. Curr Top Microbiol Immunol 285:25–66

    Article  PubMed  CAS  Google Scholar 

  41. Hughson FM (1997) Enveloped viruses: a common mode of membrane fusion? Curr Biol 7(9):R565–R569

    Article  PubMed  CAS  Google Scholar 

  42. Lewis PF, Emerman M (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68(1):510–516

    PubMed  CAS  Google Scholar 

  43. Gallay P, Swingler S, Song J, Bushman F, Trono D (1995) HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell 83(4):569–576

    Article  PubMed  CAS  Google Scholar 

  44. Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, Pierron G, Heidmann T (2006) Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res 16(12):1548–1556

    Article  PubMed  CAS  Google Scholar 

  45. Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang XY, Edouard P, Howes S, Keith JC Jr, McCoy JM (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403(6771):785–789

    Article  PubMed  CAS  Google Scholar 

  46. Ting CN, Rosenberg MP, Snow CM, Samuelson LC, Meisler MH (1992) Endogenous retroviral sequences are required for tissue-specific expression of a human salivary amylase gene. Genes Dev 6(8):1457–1465

    Article  PubMed  CAS  Google Scholar 

  47. Tarlinton RE, Meers J, Young PR (2006) Retroviral invasion of the koala genome. Nature 442(7098):79–81

    Article  PubMed  CAS  Google Scholar 

  48. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A 90(17):8033–8037

    Article  PubMed  CAS  Google Scholar 

  49. Yee JK, Miyanohara A, LaPorte P, Bouic K, Burns JC, Friedmann T (1994) A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci U S A 91(20):9564–9568

    Article  PubMed  CAS  Google Scholar 

  50. Akkina RK, Walton RM, Chen ML, Li QX, Planelles V, Chen IS (1996) High-efficiency gene transfer into CD34 + cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J Virol 70(4):2581–2585

    PubMed  CAS  Google Scholar 

  51. Sandrin V, Boson B, Salmon P, Gay W, Negre D, Le Grand R, Trono D, Cosset FL (2002) Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34 + cells derived from human and nonhuman primates. Blood 100(3):823–832

    Article  PubMed  CAS  Google Scholar 

  52. Frecha C, Costa C, Negre D, Gauthier E, Russell SJ, Cosset FL, Verhoeyen E (2008) Stable transduction of quiescent T cells without induction of cycle progression by a novel lentiviral vector pseudotyped with measles virus glycoproteins. Blood 112(13):4843–4852

    Article  PubMed  CAS  Google Scholar 

  53. Palu G, Parolin C, Takeuchi Y, Pizzato M (2000) Progress with retroviral gene vectors. Rev Med Virol 10(3):185–202

    Article  PubMed  CAS  Google Scholar 

  54. Escors D, Breckpot K (2010) Lentiviral vectors in Gene Therapy: their current status and future potential. Arch Immunol Ther Exp 58(2):107–119

    Article  CAS  Google Scholar 

  55. Stocking C, Loliger C, Kawai M, Suciu S, Gough N, Ostertag W (1988) Identification of genes involved in growth autonomy of hematopoietic cells by analysis of factor-independent mutants. Cell 53(6):869–879

    Article  PubMed  CAS  Google Scholar 

  56. Mann R, Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33(1):153–159

    Article  PubMed  CAS  Google Scholar 

  57. Pear WS, Nolan GP, Scott ML, Baltimore D (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A 90(18):8392–8396

    Article  PubMed  CAS  Google Scholar 

  58. Soneoka Y, Cannon PM, Ramsdale EE, Griffiths JC, Romano G, Kingsman SM, Kingsman AJ (1995) A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 23(4):628–633

    Article  PubMed  CAS  Google Scholar 

  59. Andreadis S, Palsson BO (1997) Coupled effects of polybrene and calf serum on the efficiency of retroviral transduction and the stability of retroviral vectors. Hum Gene Ther 8(3):285–291

    Article  PubMed  CAS  Google Scholar 

  60. Le Doux JM, Davis HE, Morgan JR, Yarmush ML (1999) Kinetics of retrovirus production and decay. Biotechnol Bioeng 63(6):654–662

    Article  PubMed  Google Scholar 

  61. Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL (1996) A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci U S A 93(24):13565–13570

    Article  PubMed  CAS  Google Scholar 

  62. Earl PL, Cooper N, Wyatt LS, Moss B, Carroll MW (2001) Preparation of cell cultures and vaccinia virus stocks. In Frederick M. Ausube et al (eds), Current protocols in molecular biology, Chapter16, Unit16

    Google Scholar 

  63. Ryser MF, Roesler J, Gentsch M, Brenner S (2007) Gene therapy for chronic granulomatous disease. Expert Opin Biol Ther 7(12):1799–1809

    Article  PubMed  CAS  Google Scholar 

  64. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, Brugman MH, Pike-Overzet K, Chatters SJ, de Ridder D, Gilmour KC, Adams S, Thornhill SI, Parsley KL, Staal FJ, Gale RE, Linch DC, Bayford J, Brown L, Quaye M, Kinnon C, Ancliff P, Webb DK, Schmidt M, von Kalle C, Gaspar HB, Thrasher AJ (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118(9):3143–3150

    Article  PubMed  CAS  Google Scholar 

  65. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J, Brouns G, Schmidt M, Von Kalle C, Barington T, Jakobsen MA, Christensen HO, Al Ghonaium A, White HN, Smith JL, Levinsky RJ, Ali RR, Kinnon C, Thrasher AJ (2004) Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364(9452):2181–2187

    Article  PubMed  CAS  Google Scholar 

  66. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288(5466):669–672

    Google Scholar 

  67. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A; Cavazzana-Calvo M (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302(5644):415–419

    Google Scholar 

  68. Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH, Schambach A, Charrier S, Galy A, Thrasher AJ, Bueren J, Baum C (2009) Insertional transformation of hematopoietic cells by Self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 17(11):1919–1928

    Google Scholar 

  69. von Schwedler U, Kornbluth RS, Trono D (1994) The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc Natl Acad Sci U S A 91(15):6992–6996

    Article  Google Scholar 

  70. Uchida N, Sutton RE, Friera AM, He D, Reitsma MJ, Chang WC, Veres G, Scollay R, Weissman IL (1998) HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc Natl Acad Sci U S A 95(20):11939–11944

    Article  PubMed  CAS  Google Scholar 

  71. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267

    Article  PubMed  CAS  Google Scholar 

  72. Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A 93(21):11382–11388

    Article  PubMed  CAS  Google Scholar 

  73. Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH (1997) Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 71(9):6641–6649

    PubMed  CAS  Google Scholar 

  74. Heinzinger NK, Bukinsky MI, Haggerty SA, Ragland AM, Kewalramani V, Lee MA, Gendelman HE, Ratner L, Stevenson M, Emerman M (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci U S A 91(15):7311–7315

    Article  PubMed  CAS  Google Scholar 

  75. VandenDriessche T, Thorrez L, Naldini L, Follenzi A, Moons L, Berneman Z, Collen D, Chuah MK (2002) Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 100(3):813–822

    Article  PubMed  CAS  Google Scholar 

  76. Korin YD, Zack JA (1998) Progression to the G1b phase of the cell cycle is required for completion of human immunodeficiency virus type 1 reverse transcription in T cells. J Virol 72(4):3161–3168

    PubMed  CAS  Google Scholar 

  77. Breckpot K, Escors D, Arce F, Lopes L, Karwacz K, Van Lint S, Keyaerts M, Collins M (2010) HIV-1 lentiviral vector immunogenicity is mediated by Toll-like receptor 3 (TLR3) and TLR7. J Virol 84:5627–5636

    Article  PubMed  CAS  Google Scholar 

  78. Ikeda Y, Takeuchi Y, Martin F, Cosset FL, Mitrophanous K, Collins M (2003) Continuous high-titer HIV-1 vector production. Nat Biotechnol 21(5):569–572

    Article  PubMed  CAS  Google Scholar 

  79. Gruber A, Kan-Mitchell J, Kuhen KL, Mukai T, Wong-Staal F (2000) Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood 96(4):1327–1333

    PubMed  CAS  Google Scholar 

  80. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15(9):871–875

    Article  PubMed  CAS  Google Scholar 

  81. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72(11):8463–8471

    PubMed  CAS  Google Scholar 

  82. Sune C, Hayashi T, Liu Y, Lane WS, Young RA, Garcia-Blanco MA (1997) CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription. Mol Cell Biol 17(10):6029–6039

    PubMed  CAS  Google Scholar 

  83. Kao SY, Calman AF, Luciw PA, Peterlin BM (1987) Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330(6147):489–493

    Article  PubMed  CAS  Google Scholar 

  84. Sirven A, Pflumio F, Zennou V, Titeux M, Vainchenker W, Coulombel L, Dubart-Kupperschmitt A, Charneau P (2000) The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 96(13):4103–4110

    PubMed  CAS  Google Scholar 

  85. Huang ZM, Yen TS (1995) Role of the hepatitis B virus posttranscriptional regulatory element in export of intronless transcripts. Mol Cell Biol 15(7):3864–3869

    PubMed  CAS  Google Scholar 

  86. Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73(4):2886–2892

    PubMed  CAS  Google Scholar 

  87. Schambach A, Bohne J, Baum C, Hermann FG, Egerer L, von Laer D, Giroglou T (2006) Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Ther 13(7):641–645

    Article  PubMed  CAS  Google Scholar 

  88. Knight S, Bokhoven M, Collins M, Takeuchi Y (2010) Effect of the internal promoter on insertional gene activation by lentiviral vectors with an intact HIV long terminal repeat. J Virol 84(9):4856–4859

    Article  PubMed  CAS  Google Scholar 

  89. Maruggi G, Porcellini S, Facchini G, Perna SK, Cattoglio C, Sartori D, Ambrosi A, Schambach A, Baum C, Bonini C, Bovolenta C, Mavilio F, Recchia A (2009) Transcriptional enhancers induce insertional gene deregulation independently from the vector type and design. Mol Ther 17(5):851–856

    Article  PubMed  CAS  Google Scholar 

  90. Bokhoven M, Stephen SL, Knight S, Gevers EF, Robinson IC, Takeuchi Y, Collins MK (2009) Insertional gene activation by lentiviral and gammaretroviral vectors. J Virol 83(1):283–294

    Article  PubMed  CAS  Google Scholar 

  91. Deglon N, Tseng JL, Bensadoun JC, Zurn AD, Arsenijevic Y, Pereira de Almeida L, Zufferey R, Trono D, Aebischer P (2000) Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson’s disease. Hum Gene Ther 11(1):179–190

    Article  PubMed  CAS  Google Scholar 

  92. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72(10):8150–8157

    PubMed  CAS  Google Scholar 

  93. Yu SF, von Ruden T, Kantoff PW, Garber C, Seiberg M, Ruther U, Anderson WF, Wagner EF, Gilboa E (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci U S A 83(10):3194–3198

    Article  PubMed  CAS  Google Scholar 

  94. Apolonia L, Waddington SN, Fernandes C, Ward NJ, Bouma G, Blundell MP, Thrasher AJ, Collins MK, Philpott NJ (2007) Stable gene transfer to muscle using non-integrating lentiviral vectors. Mol Ther 15(11):1947–1954

    Article  PubMed  CAS  Google Scholar 

  95. Karwacz K, Mukherjee S, Apolonia L, Blundell MP, Bouma G, Escors D, Collins MK, Thrasher AJ (2009) Nonintegrating lentivector vaccines stimulate prolonged T-cell and antibody responses and are effective in tumor therapy. J Virol 83(7):3094–3103

    Article  PubMed  CAS  Google Scholar 

  96. Yanez-Munoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ, Buch P, MacLaren RE, Anderson PN, Barker SE, Duran Y, Bartholomae C, von Kalle C, Heckenlively JR, Kinnon C, Ali RR, Thrasher AJ (2006) Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 12(3):348–353

    Article  PubMed  CAS  Google Scholar 

  97. Philippe S, Sarkis C, Barkats M, Mammeri H, Ladroue C, Petit C, Mallet J, Serguera C (2006) Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc Natl Acad Sci U S A 103(47):17684–17689

    Article  PubMed  CAS  Google Scholar 

  98. Takayama K, Torashima T (2009) Transgene expression in the mouse cerebellar Purkinje cells with a minimal level of integration using long terminal repeat-modified lentiviral vectors. J Neurovirology 15(5–6):371–379

    Article  CAS  Google Scholar 

  99. Arce F, Rowe HM, Chain B, Lopes L, Collins MK (2009) Lentiviral vectors transduce proliferating dendritic cell precursors leading to persistent antigen presentation and immunization. Mol Ther 17(9):1643–1650

    Article  PubMed  CAS  Google Scholar 

  100. Hu B, Dai B, Wang P (2010) Vaccines delivered by integration-deficient lentiviral vectors targeting dendritic cells induces strong antigen-specific immunity. Vaccine 28(41):6675–6683

    Article  PubMed  CAS  Google Scholar 

  101. Negri DR, Bona R, Michelini Z, Leone P, Macchia I, Klotman ME, Salvatore M, Cara A (2010) Transduction of human antigen-presenting cells with integrase-defective lentiviral vector enables functional expansion of primed antigen-specific CD8(+) T cells. Hum Gene Ther 21(8):1029–1035

    Article  PubMed  CAS  Google Scholar 

  102. Biffi A, Bartolomae CC, Cesana D, Cartier N, Aubourg P, Ranzani M, Cesani M, Benedicenti F, Plati T, Rubagotti E, Merella S, Capotondo A, Sgualdino J, Zanetti G, von Kalle C, Schmidt M, Naldini L, Montini E (2011) Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood 117(20):5332–5339

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

David Escors is funded by an Arthritis Research UK Career Development Fellowship (18433). Holly Stephenson is funded by the Biomedical Research Centre, Institute of Child Health, UCL. Karine Breckpot is funded by the Fund for Scientific Research-Flandes. The Oxford Structural Genomics Consortium is a registered UK charity (number 1097737) that receives funds from the Canadian Institutes of Health Research, The Canadian Foundation for Innovation, Genome Canada through the Ontario Genomics Institute, GlaxoSmithKline, Karolinska Institutet, the Knut and Alice Wallenberg Foundations, the Ontario Innovation Trust, the Ontario Ministry for Research and Innovation, Merck & Co., Inc., the Novartis Research Foundation, the Swedish Foundation for Strategic Research and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Escors .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Escors, D., Kochan, G., Stephenson, H., Breckpot, K. (2012). Development of Retroviral and Lentiviral Vectors. In: Lentiviral Vectors and Gene Therapy. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Basel. https://doi.org/10.1007/978-3-0348-0402-8_2

Download citation

Publish with us

Policies and ethics