Leibniz, Modal Logic and Possible World Semantics: The Apulean Square as a Procrustean Bed for His Modal Metaphysics

Part of the Studies in Universal Logic book series (SUL)


Even if Leibniz didn’t have the opportunity to actually conceive an explicit modal logic system, remains the fact that he had worked out a modal metaphysics, of which the inaugural act, in his Elementa juris naturalis (c. 1671) was an obvious reference to the Apulean square of opposition. Later, scholars acknowledged in this passage probably one of the first sketch of deontic logic of norms. His modal metaphysics rather deals with the so-called alethic modalities, sometimes expounded through a language such as R.M. Adams wondered whether Leibniz could be “a sort of grandfather of possible worlds semantics for modal logic”. In the following study, the Apulean square is used as a hermeneutic tool: however, is the square really well-fitted to express some basic implications of the modal metaphysics? The most remarkable point is that Leibniz was well aware of the K-distributive axiom □(pq)⊃(□p⊃□q) common to the main modal systems today. This awareness dissuaded him to trust the too easy solution of the necessitarianism issue grounded on the well-known distinction coming from Boethius between a “necessitas consequentiae” and a “necessitas consequentis”.

Thus Leibniz must consider a proof-theory solution style (for a contingent proposition, the reducibility of the predicate to its subject cannot be achieved). A new square could be making up, however implying a difficulty: if the modal metaphysics cannot admit the logical convertibility of the contingent propositions of which the dictum of one is exactly the negation of the dictum of the other, known since Aristotle. This is the reason for what the Apulean square could represent a Procrustean bed for Leibniz’ modal metaphysics. At the end, a new modality square may be drawn, according to which each modality in the corner is expressed by quantifications on possible worlds. Whether possible worlds semantics could supersedes Leibniz’ own explanation of contingency thanks to this new square of modalities, i.e. a possible worlds square of modalities, will be the topic of a second part of this study.


Deontic logic K-Distributive axiom of modal logic systems Blanché’s hexagon Necessitarianism Proof theory Modal metaphysics Algebra of concepts Convertibility of the contingent propositions Possible worlds semantics Boethius Calvin Leibniz 

Mathematics Subject Classification



  1. 1.
    Adams, R.M.: Leibniz. Determinist, Theist, Idealist. Oxford University Press, Oxford (1994) Google Scholar
  2. 2.
    Aristotle: First Analytics. Tricot, J. (French trans.). Organon III. Librairie philosophique Jules Vrin, Paris (1971) Google Scholar
  3. 3.
    Aristotle: De Interpretatione. Tricot, J. (French trans.). Organon II. Librairie philosophique Jules Vrin, Paris (1977) Google Scholar
  4. 4.
    Blanché, R.: Structures intellectuelles. Essai sur l’organisation systématique des concepts. Librairie philosophique Jules Vrin-reprises, Paris (1986) Google Scholar
  5. 5.
    Boethius: La consolation philosophique. Moreschini, C. (French edition), Vanpeteghem, É. (translated and annotated), Tilliette, J.-Y. (introduction). Le livre de Poche, Lettres gothiques, Paris (2005) Google Scholar
  6. 6.
    Bouveresse, J., Essais, V.: Descartes, Leibniz, Kant. Agone, Marseille (2006) Google Scholar
  7. 7.
    Calvin, J.: L’institution de la religion chrétienne. Kerygma/Farel, Marne-la-Vallée/Aix-en-Provence (1978) Google Scholar
  8. 8.
    Calvin, J.: De aeterna Dei praedestinatione. Neuser, W.H. (ed.), Fatio O. (French traduction). Scripta Ecclesiastica, vol. 1. Droz, Geneva (1998) Google Scholar
  9. 9.
    Gardies, J.-L.: Essai sur les fondements a priori de la rationalité morale et juridique. Bibliothèque de Philosophie du Droit, vol. 14. Librairie Générale de Droit et de Jurisprudence R. Pichon and R. Durand-Auzias, Paris (1972) Google Scholar
  10. 10.
    Gardies, J.-L., Kalinowski, G.: Un logicien déontique avant la lettre: Gottfried Wilhelm Leibniz. Arch. Rechts- Soz.philos. 60, 79–112 (1974) Google Scholar
  11. 11.
    Kalinowski, G.: La logique des normes. Presses Universitaires de France, Paris (1972) Google Scholar
  12. 12.
    Kalinowski, G.: Un aperçu élémentaire des modalités déontiques. Langages 10(43), 10–18 (1976) CrossRefGoogle Scholar
  13. 13.
    Kalinowski, G.: La logique juridique de Leibniz. Stud. Leibnit. 9, 168–189 (1977) Google Scholar
  14. 14.
    Leibniz, G.-W.: Sämtliche Schriften und Briefe, Hrsg. von der Berlin-Brandenburgischen und der Göttinger Akademie der Wissenschaften, vormals Preussische Akademie, danach Akademie der Wiss. der DDR, 8 Serien. Darmstadt, spätter Leipzig, Berlin (1923). Quoted: [14] followed by the number a series, volume and pagination Google Scholar
  15. 15.
    Leibniz, G.-W.: Textes inédits d’après les manuscrits de la bibliothèque provinciale de Hanovre. Grua, G. (published and annotated), 2 vols. Presses Universitaires de France, Paris (1948) Google Scholar
  16. 16.
    Leibniz, G.-W.: Philosophischen Schriften, 7 vol. G. Olms, Hildesheim (1968). Gerhardt, v.C.I. (herausg.). Quoted: [16] followed by the number of the book and pagination Google Scholar
  17. 17.
    Leibniz, G.-W.: La profession de foi du philosophe-Confessio philosophi. Belaval, Y. (established, presented, translated and annotated). Librairie philosophique Jules Vrin, Paris (1970) Google Scholar
  18. 18.
    Leibniz, G.-W.: Philosophical Essays. Ariew, R., Garber, D. (trans.). Hackett, Indianapolis (1989) Google Scholar
  19. 19.
    Leibniz, G.-W.: Recherches générales sur l’analyse des notions et des vérités. 24 thèses métaphysiques et autres textes logiques et métaphysiques. Rauzy, J.-B. (introductions and notes). Presses Universitaires de France, Paris (1998) Google Scholar
  20. 20.
    Lenzen, W.: Leibniz’s calculus of strict implication. In: Srzednicki, J. (ed.) Initiatives in Logic (Reason and Argument I), pp. 1–35. Nijhoff, Dordrecht (1987) CrossRefGoogle Scholar
  21. 21.
    Lenzen, W.: Das System der Leibniz’schen Logik. de Gruyter, Berlin (1990) Google Scholar
  22. 22.
    Lenzen, W.: Leibniz’s logic. In: Gabbay, D.M., Woods, J. (eds.) Handbook of the History of Logic. The Rise of Modern Logic: From Leibniz to Frege, pp. 1–83 (2004) CrossRefGoogle Scholar
  23. 23.
    Lenzen, W.: Leibniz on alethic and deontic modal logic. In: Berlioz, D., Nef, F. (eds.) Leibniz et les puissances du langage, pp. 341–362. Librairie philosophique Jules Vrin, Paris (2005) Google Scholar
  24. 24.
    Marenbon, J.: Le temps, l’éternité et la prescience de Boèce à Thomas d’Aquin. Librairie philosophique Jules Vrin, Paris (2005) Google Scholar
  25. 25.
    Russell, B.: A Critical Exposition of the Philosophy of Leibniz. Routledge, London (1996) Google Scholar
  26. 26.
    Schepers, H.: Zum Problem der Kontingenz bei Leibniz: Die beste der möglichen Welten. In: Collegium Philosophicum. Studien, Joachim Ritter zum 60, pp. 326–350. Geburstag, Basel (1965) Google Scholar
  27. 27.
    Sleigh, R.: Leibniz & Arnauld: A Commentary on Their Correspondence. Yale University Press, New Haven (1990) Google Scholar
  28. 28.
    Tarski, A.: Some observations on the concepts of ω-consistency and ω-completeness. In: Logic, Semantics, Metamathematics: Papers from 1923–1938, pp. 279–295 Hackett, Indianapolis (1983) Google Scholar
  29. 29.
    Von Wright, G.H.: On the logic of norms and action. In: Hilpinen, R. (ed.) New Studies in Deontic Logic, pp. 3–35. Reidel, Dordrecht (1981) CrossRefGoogle Scholar
  30. 30.
    Vuillemin, J.: Nécessité ou contingence. L’aporie de Diodore et les systèmes philosophiques. Les éditions de Minuit, Paris (1984) Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Centre Georges Chevrier-UMR 5605Université de BourgogneDijonFrance

Personalised recommendations