Logical Oppositions in Arabic Logic: Avicenna and Averroes

Abstract

In this paper, I examine Avicenna’s and Averroes’ theories of opposition and compare them with Aristotle’s. I will show that although they are close to Aristotle in many aspects, their analysis of logical oppositions differs from Aristotle’s by its semantic character, and their conceptions of opposition are different from each other and from Aristotle’s conception. Following Al Fārābī, they distinguish between propositions by means of what they call their “matter” modalities, which are determined by the meanings of the propositions. This consideration gives rise to a precise distribution of truth-values for each kind of proposition, and leads in turn to the definitions of the logical oppositions. Avicenna admits the four traditional oppositions, while Averroes, who seems closer to Aristotle and especially to Al Fārābī, does not mention subalternation, but admits subcontrariety. Nevertheless, we can find that Averroes defends what Parsons calls SQUARE and [SQUARE], because he holds E and I-conversions and the truth conditions he admits are just those that make all the relations of the square valid, while Avicenna defends SQUARE and [SQUARE] only for the waṣfī reading of assertoric propositions. They also give a special attention to the indefinite which in Averroes’ view is ambiguous, while Avicenna treats it as a particular. Some points of their analysis prefigure the medieval concepts and distinctions, but their opinion about existential import is not as clear as the medieval one and does not really escape the modern criticisms.

Keywords

Logical oppositions Matter necessity Possibility and impossibility Existential import Indefinites waṣfī vs ḍātī readings of propositions 

Mathematics Subject Classification

03A05 03B10 

References

  1. 1.
    Al Fārābī: Al Qawl fi al-‘Ibāra. Tekī dench Proh, M. (ed.). Al Mantiqiyāt lil Fārābī, vol. 1. Qom, Iran (1409 of Hegira, approximately 1988) Google Scholar
  2. 2.
    Al Fārābi: Charḥ al-‘Ibāra. Tekī dench Proh, M. (ed.). Al Mantiqiyāt lil Fārābī, vol. 2. Qom, Iran (1409 of Hegira, approximately 1988) Google Scholar
  3. 3.
    Aristotle: De Interpretatione. Barnes, J. (ed.). The Complete Works of Aristotle, the Revised Oxford Translation. Bollingen Series LXXI 2, vol. 1. Princeton Google Scholar
  4. 4.
    Aristotle: Prior Analytics. Barnes, J. (ed.). The Complete Works of Aristotle, the Revised Oxford Translation. Bollingen Series LXXI 2, vol. 1. Princeton Google Scholar
  5. 5.
    Aristotle: Topics. Barnes, J. (ed.). The Complete Works of Aristotle, the Revised Oxford Translation. Bollingen Series LXXI 2, vol. 1. Princeton Google Scholar
  6. 6.
    Aristotle: De l’interprétation. Tricot, J. (French trans.). Vrin, Paris (1969) Google Scholar
  7. 7.
    Aristotle: Kitāb al-’Ibāra. Badawī, A. (ed.). Manṭiq Arisṭū, vol. 1. Beyrouth (1980) Google Scholar
  8. 8.
    Asad, Q.A.: The Jiha/tropos-mādda/Hulē in Arabic Logic and its significance for Avicenna’s modals. In: Rahman, S., Street, T., Tahiri, H. (eds.) The Unity of Science in the Arabic Tradition. LEUS, vol. 11, pp. 229–253 (2008) CrossRefGoogle Scholar
  9. 9.
    Averroes: Kitāb al-Maqūlāt, Kitāb al-‘Ibāra, Kitāb al-Qiyās. Jehamy, G. (ed.). Talkhīṣ Manṭiq Arisṭū, vol. 1. Beyrouth (1982) Google Scholar
  10. 10.
    Averroes: Kitāb al-Jadal. Jehamy, G. (ed.). Talkhīṣ Manṭiq Aristū, vol. 2. Beyrouth (1982) Google Scholar
  11. 11.
    Averroes: Middle Commentary on Aristotle’s Prior Analytics. Critical edition by Kassem, M., completed, revised and annotated by Butterworth, C.E. and Abd al-Magīd Harīdī, A. The General Egyptian Book Organization, Cairo (1983) Google Scholar
  12. 12.
    Avicenna: al- Shifā’, al-Mantiq 2: al-Maqūlāt. Anawati, G., El Khodeiri, M., El-Ehwani, A.F., Zayed, S. (eds.), Madkour, I. (rev. and intr.). Cairo (1959) Google Scholar
  13. 13.
    Avicenna: al-Shifā’, al-Mantiq 4: al-Qiyās. Zayed, S. (ed.), Madkour, I. (rev. and intr.). Cairo (1964) Google Scholar
  14. 14.
    Avicenna: al-Shifā’, al-Mantiq 3: al-‘Ibāra. El Khodeiri, M. (ed.), Madkour, I. (rev. and intr.). Cairo (1970) Google Scholar
  15. 15.
    Béziau, J.-Y.: New light on the square of oppositions and its nameless corner. Log. Investig. 10, 218–233 (2003) Google Scholar
  16. 16.
    Blanché, R.: Sur l’opposition des concepts. Theoria 19, 89–130 (1953) CrossRefGoogle Scholar
  17. 17.
    Buridan, J., King, P.: Jean Buridan’s Logic: The Treatise on Supposition, The Treatise on Consequences. Synthese Historical, vol. 27. Kluwer Academic, Dordrecht (1985) Google Scholar
  18. 18.
    Hasnawi, A.: Avicenna on the quantification of the predicate. In: Rahman, S., Street, T., Tahiri, H. (eds.) The Unity of Science in the Arabic Tradition. LEUS, vol. 11, pp. 295–328 (2008) CrossRefGoogle Scholar
  19. 19.
    Hodges, W.: Ibn Sīnā and conflict in logic. http://wilfridhodges.co.uk/ (2010)
  20. 20.
    Kleene, S.C.: Mathematical Logic. Wiley, New York (1967). French translation: Logique mathématique. A. Colin, Paris (1971) MATHGoogle Scholar
  21. 21.
    Knuutila, S.: Medieval theories of modalities. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/modality-medieval (2008)
  22. 22.
    McIntire, M.: Categorical logic. http://www/markmcintire.com/phil/chapter3.html (2011)
  23. 23.
    Parsons, T.: The traditional square of opposition. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/square/index.html (2006)
  24. 24.
    Parsons, T.: Things that are right with the traditional square of opposition. Logica Univers. 2, 1 (2008) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Street, T.: Arabic logic. In: Gabbay, D., Woods, J. (eds.) Handbook of the History of Logic, vol. 1, Elsevier, Amsterdam (2004) Google Scholar
  26. 26.
    Wreen, M.: Existential import. Rev. Hispanoam. Filos. 16, 47 (1984) Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Department of Philosophy, Faculté des Sciences Humaines et SocialesUniversity of TunisTunisTunisia

Personalised recommendations