The Cube Generalizing Aristotle’s Square in Logic of Determination of Objects (LDO)

Part of the Studies in Universal Logic book series (SUL)

Abstract

In this paper we present a generalization of Aristotle’s square to a cube, in the framework of an extended quantification theory defined within the Logic of Determination of Objects (LDO). The Aristotle’s square is an image which makes the link between quantifier operators and negation in the First Order Predicate Language (FOPL). However, the FOPL quantification is not sufficient to capture the “meaning” of all quantified expressions in natural languages. There are some expressions in natural languages which encode a quantification on typical objects. This is the reason why we want to construct a logic of objects with typical and atypical objects. The Logic of Determination of Objects (LDO) (Desclés and Pascu, Logica Univers. 5(1):75–89, 2011) is a new logic defined within the framework of Combinatory Logic (Curry and Feys, Combinatory Logic I, North-Holland, Amsterdam, 1958) with functional types. LDO basically deals with two fundamental classes: a class of concepts (\(\mathcal{F}\)) and a class of objects (\(\mathcal{O}\)). LDO captures two kinds of objects: typical objects and atypical objects. They are defined by the means of other primitive notions: the intension of the concept f (\(\operatorname{Int}f\)), the essence of a concept f (\(\operatorname{Ess}f\)), the expanse of the concept f (\(\operatorname{Exp}f\)), the extension of the concept f (\(\operatorname{Ext}f\)). Typical objects in \(\operatorname{Exp}f\) inherit all concepts of \(\operatorname{Int}f\); atypical objects in \(\operatorname{Exp}f\) inherit only some concepts of Intf. LDO makes use of all the above notions and organizes them into a system which is a logic of objects (applicative typed system in Curry’s sense—Curry and Feys, Combinatory Logic I, North-Holland, Amsterdam, 1958—with some specific operators). In LDO new quantifiers are introduced and studied. They are called star quantifiers: Π and Σ (Desclés and Guentcheva, in: M. Bőttner, W. Thűmmel (eds.), Variable-Free Semantics, pp. 210–233, Secolo, Osnabrűck, 2000). They have a connection with classical quantifiers. They are considered as the determiners of objects of \(\operatorname{Exp}f\). They are different from the usual quantifiers Π and Σ expressed in the illative Curry version (Curry and Feys, Combinatory Logic I, North-Holland, Amsterdam, 1958) of Frege’s quantifiers. They are defined inside the Combinatory Logical formalism (Curry and Feys, Combinatory Logic I, North-Holland, Amsterdam, 1958) starting from Π and Σ, by means of abstract operators of composition called combinators (Curry and Feys, Combinatory Logic I, North-Holland, Amsterdam, 1958). The system of four quantifiers Π, Σ, Π and Σ captures the extended quantification that means quantification on typical/atypical objects. The cube generalizing the Aristotle’s square visualizes the relations between quantifiers Π, Σ, Π and Σ and the negation.

Keywords

Typical/atypical instance Determination Indeterminate object More or less determinate object Intension Expanse Extension Star quantifiers 

Mathematics Subject Classification

03B60 03B65 

References

  1. 1.
    Church, A.: The Calculi of Lambda Conversion. Princeton University Press, Princeton (1941) Google Scholar
  2. 2.
    Curry, H.B., Feys, R.: Combinatory Logic I. North-Holland, Amsterdam (1958) Google Scholar
  3. 3.
    Desclés, J.-P.: Implication entre concepts, la notion de typicalité. In: Travaux de linguistique et de littérature, XXIV, 1, pp. 79–102 (1986) Google Scholar
  4. 4.
    Desclés, J.-P.: Langages applicatifs, langues naturelles et cognition. Hermès, Paris (1990) Google Scholar
  5. 5.
    Desclés, J.-P.: Dialogue sur les prototypes et la typicalité. In: Denis, M., Sabah, G. (eds.) Modèles et concepts pour la science cognitive, hommage J.-F. Le Ny, pp. 139–163. Presses de l’Université de Grenoble, Grenoble (1993) Google Scholar
  6. 6.
    Desclés, J.-P., Cheong, K.-S.: Analyse critique de la notion de variable. Math. Sci. Hum. 173, 43–102 (2006) MATHGoogle Scholar
  7. 7.
    Desclés, J.-P., Guentcheva, Z.: Quantification without bound variables. In: Bőttner, M., Thűmmel, W. (eds.) Variable-Free Semantics, pp. 210–233. Secolo, Osnabrűck (2000) Google Scholar
  8. 8.
    Desclés, J.-P., Pascu, A.: Logic of determination of objects—the meaning of variable in quantification. Int. J. Artif. Intell. Tools 15(6), 1041–1052 (2006) CrossRefGoogle Scholar
  9. 9.
    Desclés, J.-P., Pascu, A.: Logique de la détermination des objets (LDO): une logique pour l’analyse des langues naturelles. Rev. Roum. Linguist./Rom. Rev. Linguist. LII(1–2), 55–96 (2007) Google Scholar
  10. 10.
    Desclés, J.-P., Pascu, A.: Logic of determination of objects (LDO): how to articulate “extension” with “intension” and “objects with concepts. Logica Univers. 5(1), 75–89 (2011) CrossRefGoogle Scholar
  11. 11.
    Geach, P., Black, M.: Translation from the Philosophical Writings of Gottlob Frege (1891), 2nd edn. (with corrections). Oxford Basil Blackwell, Oxford (1960) Google Scholar
  12. 12.
    Gentzen, G.: Recherches sur la déduction logique. Traduit de l’allemand par Feys, R., Ladrière, J. Presses Universitaires de France, Paris (1955) Google Scholar
  13. 13.
    Hilbert, D., Bernays, P.: Grundlagen der Mathematik II. Springer, Berlin (1939) MATHGoogle Scholar
  14. 14.
    Frege, G.: Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet (1893). Translated and edited with an introduction by Furth, M.: Basic Laws of Arithmetic (Exposition of the System). University of California Press, Los Angeles (1967) Google Scholar
  15. 15.
    Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle (1879). Version francaise par Besson, C.: l’Idéographie. Vrin, Paris (1999) Google Scholar
  16. 16.
    Montague, R.: The proper treatment of quantification in ordinary English. In: Thomason, R.H. (ed.) Formal Philosophy: Selected Papers of Richard Montague. Yale University Press, New Haven (1974) Google Scholar
  17. 17.
    Rosch, E.: Principles of categorization. In: Cognition and Categorization. Lawrence Erlbaum, Hillsdale (1978) Google Scholar
  18. 18.
    Pascu, A.: Logique de Détermination d’Objets: concepts de base et mathématisation en vue d’une modélisation objet. Thèse de doctorat, Université de Paris-Sorbonne, Paris (2001) Google Scholar
  19. 19.
    Pascu, A.: Les objets dans la représentation des connaissances. Application aux processus de catégorisation en informatique et sciences humaines. Habilitation à diriger des recherches, Université de Paris-Sorbonne, Paris (2006) Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.LaLIC (Langues, Logiques, Informatique et Cognition)Université de Paris SorbonneParisFrance
  2. 2.LaLICUniversité de Bretagne Occidentale BrestBrest Cedex 03France

Personalised recommendations