Oppositions and Opposites

Abstract

A formal theory of oppositions and opposites is proposed on the basis of a non-Fregean semantics, where opposites are negation-forming operators that shed some new light on the connection between opposition and negation. The paper proceeds as follows.

After recalling the historical background, oppositions and opposites are compared from a mathematical perspective: the first occurs as a relation, the second as a function. Then the main point of the paper appears with a calculus of oppositions, by means of a non-Fregean semantics that redefines the logical values of various sorts of sentences. A number of topics are then addressed in the light of this algebraic semantics, namely: how to construct value-functional operators for any logical opposition, beyond the classical case of contradiction; Blanché’s “closure problem”, i.e. how to find a complete structure connecting the sixteen binary sentences with one another.

All of this is meant to devise an abstract theory of opposition: it encompasses the relation of consequence as subalternation, while relying upon the use of a primary “proto-negation” that turns any relatum into an opposite. This results in sentential negations that proceed as intensional operators, while negation is broadly viewed as a difference-forming operator without special constraints on it.

Keywords

INRC Group Negation Opposite-forming operators Opposition Proto-negation 

Mathematics Subject Classification

03B35 03B05 03B65 

References

  1. 1.
    Aristotle: Metaphysics Google Scholar
  2. 2.
    Aristotle: On Interpretation Google Scholar
  3. 3.
    Aristotle: Prior Analytics Google Scholar
  4. 4.
    Béziau, J.-Y.: New light on the square of opposition and its nameless corner. Log. Investig. 10, 218–233 (2003) Google Scholar
  5. 5.
    Blanché, R.: Sur l’opposition des concepts. Theoria 19, 89–130 (1953) CrossRefGoogle Scholar
  6. 6.
    Blanché, R.: Sur la structuration du tableau des connectifs interpropositionnels binaires. J. Symb. Log. 22, 178 (1957) CrossRefGoogle Scholar
  7. 7.
    Blanché, R.: Structures intellectuelles (Essai sur l’organisation systématique des concepts). Vrin, Paris (1966) Google Scholar
  8. 8.
    Chatti, S., Schang, F.: Import, or not import? How to handle negation inside the square. Submitted paper Google Scholar
  9. 9.
    Czeżowski, T.: On certain peculiarities of singular propositions. Mind 64, 392–395 (1955) CrossRefGoogle Scholar
  10. 10.
    Luzeaux, D., Sallantin, J., Dartnell, C.: Logical extensions of Aristotle’s square. Logica Univers. 2, 167–187 (2008) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Moretti, A.: The Geometry of Logical Opposition. PhD thesis, University of Neuchâtel (2009) Google Scholar
  12. 12.
    Pellissier, R.: Setting n-opposition. Logica Univers. 2, 235–262 (2008) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Piaget, J.: Essai sur les transformations des opérations logiques (Les 256 opérations ternaires de la logique bivalente des propositions). Presses Universitaires de France, Paris (1952) Google Scholar
  14. 14.
    Piaget, J.: Traité de logique (Essai de logistique opératoire). Armand Colin (1972) (1st edition, 1949) Google Scholar
  15. 15.
    Schang, F.: Relative charity. Rev. Bras. Filos. 233, 159–172 (2009) Google Scholar
  16. 16.
    Schang, F.: Questions and answers about oppositions. In: Béziau, J.-Y., Payette, G. (eds.) New Perspectives on the Square of Opposition. Peter Lang, Bern (2011) Google Scholar
  17. 17.
    Schang, F.: Two Indian dialectical logics: saptabhaṅgī and catuṣkoṭi. J. Indian Counc. Philos. Res. 27, 45–75 (2011) Google Scholar
  18. 18.
    Sesmat, A.: Logique—II. Les raisonnements, la logistique. Hermann, Paris (1951) Google Scholar
  19. 19.
    Slater, H.: Paraconsistent logics? J. Philos. Log. 24, 451–454 (1995) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Smessaert, H.: On the 3D visualization of the logical relations. Logica Univers. 3, 212–231 (2009) MathSciNetGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.LHSP Henri Poincaré (UMR7117)Université de LorraineNancyFrance

Personalised recommendations