Skip to main content

Concentration Analysis and Cocompactness

  • Conference paper
  • First Online:
Concentration Analysis and Applications to PDE

Part of the book series: Trends in Mathematics ((TM))

Abstract

Loss of compactness that occurs in may significant PDE settings can be expressed in a well-structured form of profile decomposition for sequences. Profile decompositions are formulated in relation to a triplet (X,Y,D), where X and Y are Banach spaces, XY , and D is, typically, a set of surjective isometries on both X and Y. A profile decomposition is a representation of a bounded sequence in X as a sum of elementary concentrations of the form gk w, gkD, wX, and a remainder that vanishes in Y . A necessary requirement for X is, therefore, that any sequence in X that develops no D-concentrations has a subsequence convergent in the norm of Y . An imbedding XY with this property is called D-cocompact, a property weaker than, but related to, compactness. We survey known cocompact imbeddings and their role in profile decompositions.

Mathematics Subject Classification (2010). Primary 35J20, 35J60, 35B44, 35H20; Secondary 46B50, 58J05, 58J70, 74H35.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.A., Compact imbedding theorems for quasibounded domains, Trans. Amer. Math. Soc., 148 (1970), 445–459.

    Article  MathSciNet  MATH  Google Scholar 

  2. Adimurthi; do O., J.M.; Tintarev, K., Cocompactness and minimizers for inequalities of Hardy–Sobolev type involving N-Laplacian. NoDEA 17 (2010), 467–477.

    Google Scholar 

  3. Adimurhti; Tintarev, K., On a version of Trudinger–Moser inequality with Möbius shift invariance, Calc. Var. Partial Differential Equations 39 (2010), 203–212.

    Google Scholar 

  4. Adimurhti; Tintarev, C., On compactness in Trudinger–Moser inequality, Annali SNS Pisa (accepted), arXiv:1110.3647.

    Google Scholar 

  5. Adimurthi; Sandeep, K., A singular Moser–Trudinger embedding and its applications, NoDEA 13 (2007), 585–603.

    Google Scholar 

  6. Arioli, G.; Szulkin, A., A semilinear Schrödinger equation in the presence of a magnetic field, Arch. Ration. Mech. Anal. 170 (2003), no. 4, 277–295.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bahouri, H.; Cohen, A.; Koch, G., A General Wavelet-Based Profile Decomposition in the Critical Embedding of Function Spaces, Confluentes Matematicae 3 (2011), 387–411.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bahouri, H.; Gérard, P.; High frequency approximation of solutions to critical nonlinear wave equations Amer. J. Math. 121 (1999), 131–175.

    Article  MATH  Google Scholar 

  9. Bahouri, H.; Majdoub, M.; Masmoudi, N., On the lack of compactness in the 2D critical Sobolev embedding. J. Funct. Anal. 260 (2011), 208–252.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bahouri, H.; Majdoub, M.; Masmoudi, N., Lack of compactness in the 2D critical Sobolev embedding, the general case, C. R. Math. Acad. Sci. Paris 350 (2012), 177–181.

    Google Scholar 

  11. Ben Ameur, J.; Description du défaut de compacité de l’injection de Sobolev sur le groupe de Heisenberg, Bull. Soc. Math. Belg. 15, 599–624, 2008.

    MathSciNet  Google Scholar 

  12. Benci, V.; Cerami, G., Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rat. Mech. Anal. 99 (1987), 283–300.

    Google Scholar 

  13. Bennett, C.; Rudnick, K., On Lorentz–Zygmund spaces, Dissertationes Math. (Rozprawy Mat.) 175 (1980), 67 pp.

    Google Scholar 

  14. Biroli, M.; Schindler, I.; Tintarev, K., Semilinear equations on Hausdorff spaces with symmetries. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27 (2003), 175–189.

    Google Scholar 

  15. Brezis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.

    Article  MathSciNet  MATH  Google Scholar 

  16. Brezis, H; Coron J.M.; Convergence of solutions of H-systems or how to blow bubbles, Archive Rat. Mech. Anal. 89 (1985), 21–56.

    Google Scholar 

  17. Cazenave, T., Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp.

    Google Scholar 

  18. Chabrowski, J., Weak convergence methods for semilinear elliptic equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. xii+234 pp.

    Google Scholar 

  19. Clark C., An embedding theorem for function spaces, Pacific J. Math. 19 (1966), 243–251.

    Article  MathSciNet  MATH  Google Scholar 

  20. Cwikel, M.; Tintarev, C.; On interpolation of cocompact imbeddings, Rev. Mat. Complut. 26 (2013), 33–55.

    Google Scholar 

  21. Cwikel M., Tintarev, C., Profile decompositions in Banach spaces (in preparation).

    Google Scholar 

  22. del Pino, M., Felmer, P., Least energy solutions for elliptic equations in unbounded domains, Proc. Royal Soc. Edinburgh 126A (1996), 195–208.

    Article  Google Scholar 

  23. DeVore, R.; Jawerth B.; Popov, V.; Compression of wavelet decompositions, American Journal of Mathematics, 114 (1992), 737–785.

    Google Scholar 

  24. Druet, O.; Hebey, E.; Robert, F. Blow-up theory for elliptic PDEs in Riemannian geometry, Mathematical Notes 45, Princeton University Press, Princeton, NJ, 2004. viii+218 pp.

    Google Scholar 

  25. Folland, G.B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161–207.

    Google Scholar 

  26. Folland, G.B.; Stein, E.M., Estimates for the ∂b complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522.

    Google Scholar 

  27. Isabelle Gallagher. Profile decomposition for solutions of the Navier-Stokes equations. Bull. Soc. Math. France, 129 (2001), 285–316.

    MathSciNet  MATH  Google Scholar 

  28. Gérard, P., Description du défaut de compacité de l’injection de Sobolev, ESAIM Co ntro l Optim. Calc. Var. 3 (1998), 213–233.

    Article  MATH  Google Scholar 

  29. Jaffard, S., Analysis of the lack of compactness in the critical Sobolev embeddings, J. Funct. Anal. 161 (1999) 384–396.

    Google Scholar 

  30. Kenig, C.E.; Merle, F., Global well-posedness, scattering and blow-up for the energycritical focusing non-linear wave equation, Acta Math. 201 (2008), 147–212.

    Google Scholar 

  31. Keraani, S., On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal. 235 (2006),171–192.

    Article  MathSciNet  MATH  Google Scholar 

  32. Killip, R., Visan, M., Nonlinear Schrödinger equations at critical regularity. Lecture notes prepared for Clay Mathematics Institute Summer School, Z¨urich, Switzerland, 2008.

    Google Scholar 

  33. G. Kyriasis, Nonlinear approximation and interpolation spaces, Journal of Approximation Theory, 113, 110–126, 2001.

    Article  MathSciNet  Google Scholar 

  34. Li, Yuxiang; Ruf, Bernhard, A sharp Trudinger–Moser type inequality for unbounded domains in R n. Indiana Univ. Math. J. 57 (2008), 451–480.

    Google Scholar 

  35. Lieb, E., On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74 (1983), 441–448.

    Article  MathSciNet  MATH  Google Scholar 

  36. Lions P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case, part 1. Ann. Inst. H. Poincaré, Analyse non linéaire 1 (1984), 109–1453

    Google Scholar 

  37. Lions P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Ann. Inst. H. Poincaré, Analyse non linéaire 1 (1984), 223–283

    Google Scholar 

  38. Lions P.-L., The concentration-compactness principle in the calculus of variations. The Limit Case, Part 1, Revista Matematica Iberoamericana 1.1 (1985), 145–201.

    Article  MathSciNet  MATH  Google Scholar 

  39. Lions P.-L., The concentration-compactness principle in the calculus of variations. The Limit Case, Part 2, Revista Matematica Iberoamericana 1.2 (1985), 45–121.

    Article  MathSciNet  MATH  Google Scholar 

  40. Lions, P.-L., Solutions of Hartree–Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1987), 33–97.

    Article  MathSciNet  MATH  Google Scholar 

  41. Y. Meyer, Ondelettes et opérateurs, Hermann, 1990.

    Google Scholar 

  42. J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971) 1077–1092

    Article  Google Scholar 

  43. Maz’ya, V., Sobolev spaces with applications to elliptic partial differential equations, Second, revised and augmented edition, Grundlehren der Mathematischen Wissenschaften 342, Springer, Heidelberg, 2011. xxviii+866 pp.

    Google Scholar 

  44. Giampiero Palatucci, Adriano Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, arXiv: 1302.5923

    Google Scholar 

  45. Schindler, I.; Tintarev, K., An abstract version of the concentration compactness principle, Rev. Mat. Complut. 15 (2002), 417–436.

    MathSciNet  MATH  Google Scholar 

  46. Shatah J., Struwe, M., Regularity results for nonlinear wave equations, Ann. of Math. 138 (1993), 503–518.

    Article  MathSciNet  MATH  Google Scholar 

  47. Shatah J., Struwe, M., Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices 7 (1994), 303–309.

    Article  MathSciNet  Google Scholar 

  48. Skrzypczak, L., Tintarev, C.; A geometric criterion for compactness of invariant subspaces, Arch. Math (online first, DOI 10.1007/s00013-013-0554-8).

  49. Solimini, S., A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), 319–337.

    MathSciNet  MATH  Google Scholar 

  50. Schindler, I.; Tintarev, K., Semilinear subelliptic problems without compactness on Lie groups, NoDEA 11 (2004), 299–309.

    Article  MathSciNet  MATH  Google Scholar 

  51. Strauss, W.A., Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55 (1977), 149–162.

    Google Scholar 

  52. Struwe, M., A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187 (1984), 511–517.

    Article  MathSciNet  MATH  Google Scholar 

  53. Tao, Terence, A pseudoconformal compactification of the nonlinear Schrödinger equation and applications, New York J. Math. 15 (2009), 265–282.

    MathSciNet  MATH  Google Scholar 

  54. Tao, T., A (Concentration-)Compact Attractor for High-dimensional Non-linear Schrödinger Equations, Dynamics of PDE, 4 (2007), 1–53.

    MATH  Google Scholar 

  55. Schindler, I.; Tintarev, K., Semilinear equations on fractal blowups, J. Math. Anal. Appl. 352 (2009) 57–64.

    Article  MathSciNet  MATH  Google Scholar 

  56. Tintarev K., Fieseler K.-H., Concentration compactness: functional-analytic grounds and applications, Imperial College Press 2007.

    Book  Google Scholar 

  57. Willem, M., Minimax theorems, Progress in Nonlinear Differential Equations and their Applications 24, Birkh¨auser Boston, Inc., Boston, MA, 1996. x+162 pp.

    Google Scholar 

  58. Yudovich, V.I., Some estimates connected with integral operators and with solutions of elliptic equations, Sov. Math., Dokl. 2 (1961), 746–749.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Tintarev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel AG

About this paper

Cite this paper

Tintarev, C. (2013). Concentration Analysis and Cocompactness. In: Adimurthi, ., Sandeep, K., Schindler, I., Tintarev, C. (eds) Concentration Analysis and Applications to PDE. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0373-1_7

Download citation

Publish with us

Policies and ethics