From Forms to Semigroups

  • Wolfgang ArendtEmail author
  • A. F. M. ter Elst
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 221)


We present a review and some new results on form methods for generating holomorphic semigroups on Hilbert spaces.In particular, we explain how the notion of closability can be avoided.As examples we include the Stokes operator, the Black–Scholes equation, degenerate differential equations and the Dirichlet-to-Neumann operator.


Sectorial form semigroup 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABHN.
    Arendt, W., Batty, C., Hieber, M. and Neubrander, F., Vector-valued Laplace transforms and Cauchy problems, vol. 96 of Monographs in Mathematics. Birkhäuser, Basel, 2001.zbMATHGoogle Scholar
  2. AEH.
    Arendt, W., El-Mennaoui, O. and Hieber, M., Boundary values of holomorphic semigroups. Proc. Amer. Math. Soc. 125 (1997), 635–647.MathSciNetzbMATHCrossRefGoogle Scholar
  3. AE1.
    Arendt, W. and Elst, A.F.M. ter, The Dirichlet-to-Neumann operator on rough domains J. Differential Equations 251 (2011), 2100–2124.MathSciNetzbMATHCrossRefGoogle Scholar
  4. AE2.
    ——, Sectorial forms and degenerate differential operators. J. Operator Theory 67 (2011), 33–72.Google Scholar
  5. AN.
    Arendt, W. and Nikolski, N., Vector-valued holomorphic functions revisited. Math. Z. 234 (2000), 777–805.MathSciNetzbMATHCrossRefGoogle Scholar
  6. AW.
    Arendt, W. and Warma, M., The Laplacian with Robin boundary conditions on arbitrary domains. Potential Anal. 19 (2003), 341–363.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Dav.
    Davies, E.B., Heat kernels and spectral theory. Cambridge Tracts in Mathematics 92. Cambridge University Press, Cambridge etc., 1989.zbMATHCrossRefGoogle Scholar
  8. Kat.
    Kato, T., Perturbation theory for linear operators. Second edition, Grundlehren der mathematischen Wissenschaften 132. Springer-Verlag, Berlin etc., 1980.zbMATHGoogle Scholar
  9. MR.
    Ma, Z.M. and Röckner, M., Introduction to the theory of (non-symmetric) Dirichlet Forms. Universitext. Springer-Verlag, Berlin etc., 1992.zbMATHCrossRefGoogle Scholar
  10. Maz.
    Maz’ja, V.G., Sobolev spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin etc., 1985.zbMATHGoogle Scholar
  11. Mon.
    Monniaux, S., Navier–Stokes equations in arbitrary domains: the Fujita–Kato scheme. Math. Res. Lett. 13 (2006), 455–461.MathSciNetzbMATHGoogle Scholar
  12. Ouh.
    Ouhabaz, E.-M., Analysis of heat equations on domains, vol. 31 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2005.zbMATHGoogle Scholar
  13. Tan.
    Tanabe, H., Equations of evolution. Monographs and Studies in Mathematics 6. Pitman, London etc., 1979.zbMATHGoogle Scholar
  14. Tem.
    Temam, R., Navier–Stokes equations. Theory and numerical analysis. Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI, 2001.zbMATHGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Institute of Applied AnalysisUniversity of UlmUlmGermany
  2. 2.Department of MathematicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations