Skip to main content

A Dunkl-Williams Inequality and the Generalized Operator Version

  • Conference paper
  • First Online:
Inequalities and Applications 2010

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 161))

  • 779 Accesses

Abstract

C.F. Dunkl and K.S. Williams (Am. Math. Mon. 71, 53–54 (1964)) showed that for any nonzero elements x, y in a normed linear space \(\mathcal{X}\)

$$\biggl \Vert \frac{x}{ \Vert {x}\Vert }-\frac{y}{ \Vert {y}\Vert }\biggr \Vert \leq\frac{4 \Vert {x-y}\Vert }{ \Vert {x}\Vert + \Vert {y}\Vert }. $$

Recently, J. Pečarić and R. Rajić (J. Math. Inequal. 4, 1–10 (2010)) gave a refinement and, moreover, a generalization to operators \(A,B \in\mathcal{B}(\mathcal{H})\) such that |A|, |B| are invertible as follows:

$$\bigl|A|A|^{-1}-B|B|^{-1}\bigr|^2 \le|A|^{-1}\bigl(p|A-B|^2+q\bigl(|A|-|B|\bigr)^2\bigr)|A|^{-1} $$

where p,q>1 with \(\frac{1}{p}+\frac{1}{q}=1\).

In this note, we review some results concerning the Dunkl-Williams inequality and the generalization of the operator version of J. Pečarić and R. Rajić.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramovich, S., Barić, J., Pečarić, J.: A new proof of an inequality of Bohr for Hilbert space operators. Linear Algebra Appl. 430, 1432–1435 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bohr, H.: Zur theorie der fastperiodischen funktionmen I. Acta Math. 45, 29–127 (1927)

    Article  Google Scholar 

  3. Cheung, W.-S., Pečarić, J.: Bohr’s inequalities for Hilbert space operators. Anal. Appl. 323, 403–412 (2006)

    Article  MathSciNet  Google Scholar 

  4. Dunkl, C.F., Williams, K.S.: A simple norm inequality. Am. Math. Mon. 71, 53–54 (1964)

    Article  MathSciNet  Google Scholar 

  5. Fujii, M., Zuo, H.: Matrix order in Bohr inequality for operators. Banach J. Math. Anal. 4, 21–27 (2010)

    Article  MathSciNet  Google Scholar 

  6. Hirzallah, O.: Non-commutative operator Bohr inequality. J. Math. Anal. Appl. 282, 578–583 (2003)

    Article  MathSciNet  Google Scholar 

  7. Jiménez-Melado, A., Llorens-Fuster, E., Mazcuñán-Navarro, E.M.: The Dunkl-Williams constant, convexity, smoothness and normal structure. J. Math. Anal. Appl. 342, 298–310 (2008)

    Article  MathSciNet  Google Scholar 

  8. Kato, M., Saito, K.-S., Tamura, T.: Sharp triangle inequality and its reverse in Banach spaces. Math. Inequal. Appl. 10, 451–460 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Kirk, W.A., Smiley, M.S.: Another characterization of inner product spaces. Am. Math. Mon. 71, 890–891 (1964)

    Article  MathSciNet  Google Scholar 

  10. Lorch, E.R.: On certain implications which characterize Hilbert space. Ann. Math. 49, 523–532 (1948)

    Article  MathSciNet  Google Scholar 

  11. Maligranda, L.: Simple norm inequalities. Am. Math. Mon. 113, 256–260 (2006)

    Article  MathSciNet  Google Scholar 

  12. Maligranda, L.: Some remarks on the triangle inequality for norms. Banach J. Math. Anal. 2, 31–41 (2008)

    Article  MathSciNet  Google Scholar 

  13. Massera, J.L., Schaffer, J.J.: Linear differential equations and functional analysis, I. Ann. Math. 67, 517–573 (1958)

    Article  MathSciNet  Google Scholar 

  14. Mitrinović, D.S.: Analytic Inequalities. Springer, New York (1970)

    Book  Google Scholar 

  15. Pečarić, J., Rajić, R.: Inequalities of the Dunkl-Williams type for absolute value operators. J. Math. Inequal. 4, 1–10 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Saito, K.-S., Tominaga, M.: The Dunkl-Williams type inequality for absolute value operators. Linear Algebra Appl. 432, 3258–3264 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors appreciate the referees for their useful comments and helpful suggestions. The first author is supported in part by Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science (No. 20540158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kichi-Suke Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this paper

Cite this paper

Saito, KS., Tominaga, M. (2012). A Dunkl-Williams Inequality and the Generalized Operator Version. In: Bandle, C., Gilányi, A., Losonczi, L., Plum, M. (eds) Inequalities and Applications 2010. International Series of Numerical Mathematics, vol 161. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0249-9_10

Download citation

Publish with us

Policies and ethics