Advertisement

The Inconsistency of Dedekind’s Infinite Set

  • Arie HinkisEmail author
Chapter
Part of the Science Networks. Historical Studies book series (SNHS, volume 45)

Abstract

We review here the arguments raised by Cantor against Dedekind’s infinite set and Dedekind’s own doubts on this issue. This chapter still touches the main subject of this book, CBT, on two points: inconsistent sets and Bernstein’s visit to Dedekind which brought about Dedekind’s proof of CBT (see  Chap. 4,  Sect. 7.4,  Chap. 9).

Keywords

Unpublished Paper Creative Power Impredicative Definition Inconsistent Multiplicity Segregation Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Becker O. Grundlagen der Mathematik in geschichtlicher Entwickelung, München; 1954.Google Scholar
  2. Bolzano B. Paradoxien des Unendlichen. Vdm Verlag, 2006. Partial translation in Ewald 1996 vol 1 p. 249.Google Scholar
  3. Cantor G. Grundlagen einer allegmeinen Mannigfaltigkeitslehre, (‘Grundlagen’). Cantor 1932;165–209. English translation: Ewald 1996 vol 2, 881–920. Cf. Parpart 1976.Google Scholar
  4. Cantor G. Über eine elementare Frage der Mannigfaltigkeitslehre, (‘1892 Frage’). Jahresbericht der Deutschen Mathematiker-Vereinigung. 1892;1:75–8. Cantor 1932;278–80. English translation Ewald 1996 vol 2, 920–2.Google Scholar
  5. Cantor G. Beiträge zur Begründung der transfiniten Mengenlehre, (‘1895 Beiträge’). Cantor 1932;282–311. English translation: Cantor 1915.Google Scholar
  6. Cantor G. Beiträge zur Begründung der transfiniten Mengenlehre, (‘1897 Beiträge’). Cantor 1932;312–56. English translation: Cantor 1915.Google Scholar
  7. Cantor G. Gesammelte Abhandlungen Mathematischen und philosophischen Inhalts, edited by Zermelo E. Springer, Berlin 1932. http://infini.philosophons.com/.
  8. Cavailles J. Philosophie mathématique. Paris: Hermann; 1962.zbMATHGoogle Scholar
  9. Charraud N. Infini et inconscient: essai sur Georg Cantor. Paris: Anthropos; 1994.zbMATHGoogle Scholar
  10. Dedekind R. Gesammelte Mathematische Werke, edited by Fricke R, Noether E, Ore O. vol 3 Braunschweig, 1930–32.Google Scholar
  11. Dedekind R. Essays on the theory of numbers, English translation of Dedekind 1888, by Berman WW, New York: Dover; 1963. Also in Ewald 1996 vol 2 p 787–833.Google Scholar
  12. Dugac P. Richard Dedekind et les fondements des mathématiques. Paris: Vrin; 1976.zbMATHGoogle Scholar
  13. Ebbinghaus HD. Ernst Zermelo. An approach to his life and work. New York: Springer; 2007.zbMATHGoogle Scholar
  14. Ewald W. editor. From Kant to Hilbert: a source book in the foundations of mathematics. 2 vols. Oxford: Clarendon Press; 1996.Google Scholar
  15. Ferreirós J. Labyrinth of thought. A history of set theory and its role in modern mathematics. Basel/Boston/Berlin: Birkhäuser; 1999.zbMATHGoogle Scholar
  16. Fraenkel AA. Abstract set theory. 3rd ed. Amsterdam: North Holland; 1966.Google Scholar
  17. Fraenkel AA, Bar-Hillel Y, Levy A. Foundations of set theory. 2nd ed. Amsterdam: North Holland; 1973.zbMATHGoogle Scholar
  18. Frege G. Grundgesetze der Arithmetik, Begriffsscriftlich abgeleitet. 2 Bände. Jena. English translation: Montgomery Furth, University of California Press, Berkeley, 1967.Google Scholar
  19. Frege G. Kritische Beleuchtung einiger Punkte in E. Schröder’s Vorlesungen über die Algebra der Logik, Archiv fur systematische Philosophie 1, 433–56. English translation: Geach P. Black M. Basil, Translation from the philosophical writings of Gottlob Frege, Oxford: Blackwell; 1980. pp. 86–106.Google Scholar
  20. Gillies DA. Frege, Dedekind, and Peano on the foundations of arithmetic. Assen, Netherlands: Van Gorcum; 1982.zbMATHGoogle Scholar
  21. Grattan-Guinness I. Towards a biography of Georg Cantor. Ann Sci. 1970;27:345–91.Google Scholar
  22. Hallett M. Cantorian set theory and limitation of size. Oxford: Clarendon Press; 1984.Google Scholar
  23. Hessenberg G. Grundbegriffe der Mengenlehre. Abhandlungen der Friesschen Schule. 1906;2(1):479–706. reprinted Göttingen, Vardenhoeck & Ruprecht 1906.Google Scholar
  24. Lakatos I. Proofs and refutations. Cambridge: Cambridge University Press; 1976.zbMATHCrossRefGoogle Scholar
  25. Landau E. Richard Dedekind – Gedächtisrede, Nachrichten von der Koniglichen Gesellschaft der Wissenschaften zu Gottingen Geschäftliche Mitteilungen 1917;50–70.Google Scholar
  26. McCarty DC. The mysteries of Richard Dedekind. In: Hintikka J, editor. From Dedekind to Gödel. Dordrecht: Kluwer; 1995. p. 53–96.CrossRefGoogle Scholar
  27. Moore GH, Garciadiego A. Burali-Forti’s Paradox: a reappraisal of its origins. Hist Math. 1981;8:319–50.MathSciNetzbMATHCrossRefGoogle Scholar
  28. Pla i Carrera J. Dedekind and the theory of sets. Modern Logic. 1993;3(3):215–305.MathSciNetzbMATHGoogle Scholar
  29. Purkert W, Ilgauds HJ. Georg Cantor 1845–1918. Basel: Birkhäuser Verlag; 1987.zbMATHGoogle Scholar
  30. Russell B. Introduction to mathematical philosophy. London: George Allen & Unwin; 1919.zbMATHGoogle Scholar
  31. Russell B. The collected papers of Bertrand Russell: foundations of logic, 1903–1905, vol 4, edited by Urquart A, London: Routledge; 1994.Google Scholar
  32. Scharlau W. editor. Richard Dedekind 1831–1981. Eine Würdigung zu seinem 150 Geburtstag, Braunschweig/Weisbaden: Vieweg; 1981.Google Scholar
  33. Sinaceur MA. Appartenance et inclusion: un inedit de Richard Dedekind. Revue d’Histoire des Sciences. 1971;24:247–55.zbMATHCrossRefGoogle Scholar
  34. Zermelo E. Neuer Beweiss für die Möglichkeit einer wohlordnung, Mathematische Annalen 1908a;65:107–28. English translation: van Heijenoort 1967;183–98.Google Scholar
  35. Zermelo E. Untersuchungen über die Grundlagen der Mengenlehre. I, Mathematische Annalen 1908b;65:261–81. English translation: van Heijenoort 1967;199–215.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.The Cohn Institute for the History and Philosophy of Science and IdeasTel Aviv UniversityTel AvivIsrael

Personalised recommendations