Advertisement

Ruptures in the Cantor-Dedekind Correspondence

  • Arie HinkisEmail author
Chapter
Part of the Science Networks. Historical Studies book series (SNHS, volume 45)

Abstract

To the current views regarding the ruptures in the Cantor-Dedekind correspondence, we add the Aufgabe complex: Cantor’s pattern of approaching Dedekind with a seemingly open problem to which he already had an answer. We believe that Dedekind identified this pattern and resented it. We have noted the Aufgabe complex in the context of CBT and for this reason we link the subject to our work.

Keywords

Algebraic Number Cardinal Number Transcendental Number Letter Cantor Regular Correspondence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Belna JP. Cantor. Paris: Les Belles lettres; 2003.zbMATHGoogle Scholar
  2. Cantor G. Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zaheln, (‘1874 Eigenschaft’). Cantor 1932;115–8. English translation: Ewald 1996 vol 2, 839–43.Google Scholar
  3. Cantor G. Ein Beitrag zur Mannigfeltigkeitslehre, (‘1878 Beitrag’). Cantor 1932;119–33.Google Scholar
  4. Cantor G. Gesammelte Abhandlungen Mathematischen und philosophischen Inhalts, edited by Zermelo E. Springer, Berlin 1932. http://infini.philosophons.com/.
  5. Cavailles J. Philosophie mathématique. Paris: Hermann; 1962.zbMATHGoogle Scholar
  6. Charraud N. Infini et inconscient: essai sur Georg Cantor. Paris: Anthropos; 1994.zbMATHGoogle Scholar
  7. Dauben JW. Georg Cantor. His Mathematics and the Philosophy of the Infinite, Cambridge MA: Harvard University Press; 1979. Reprinted by Princeton University Press, 1990.Google Scholar
  8. Dedekind R. Gesammelte Mathematische Werke, edited by Fricke R, Noether E, Ore O. vol 3 Braunschweig, 1930–32.Google Scholar
  9. Dugac P. Richard Dedekind et les fondements des mathématiques. Paris: Vrin; 1976.zbMATHGoogle Scholar
  10. Ewald W. editor. From Kant to Hilbert: a source book in the foundations of mathematics. 2 vols. Oxford: Clarendon Press; 1996.Google Scholar
  11. Ferreirós J. On the relations between Georg Cantor and Richard Dedekind. Hist Math. 1993;20:343–63.zbMATHCrossRefGoogle Scholar
  12. Ferreirós J. Labyrinth of thought. A history of set theory and its role in modern mathematics. Basel/Boston/Berlin: Birkhäuser; 1999.zbMATHGoogle Scholar
  13. Grattan-Guinness I. The correspondence between Georg Cantor and Philip Jourdain. Jahresbericht der Deutschen Mathematiker-Vereinigung. 1971a;73(Part 1):111–39.MathSciNetzbMATHGoogle Scholar
  14. Grattan-Guinness I. The rediscovery of the Cantor-Dedekind correspondence. Jahresbericht der Deutschen Mathematiker-Vereiningung. 1974;76:104–39.MathSciNetzbMATHGoogle Scholar
  15. Medvedev FA. 1966. Ранняя история теоремы эквивалентности (Early history of the equivalence theorem), Ист.-мат. исслед. (Research in the history of mathematics) 1966;17:229–46.Google Scholar
  16. Meschkowski H, Nilsen W. Georg Cantor: briefe. Berlin: Springer; 1991.Google Scholar
  17. Scharlau W. editor. Richard Dedekind 1831–1981. Eine Würdigung zu seinem 150 Geburtstag, Braunschweig/Weisbaden: Vieweg; 1981.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.The Cohn Institute for the History and Philosophy of Science and IdeasTel Aviv UniversityTel AvivIsrael

Personalised recommendations