Advertisement

Comparability in Cantor’s Writings

  • Arie HinkisEmail author
Chapter
Part of the Science Networks. Historical Studies book series (SNHS, volume 45)

Abstract

There are two types of comparabilities in Cantor’s writings: comparability of sets, referred to also as the comparability of powers, and comparability of cardinal numbers. The latter applies only to consistent sets and the first to any sets. The distinction between the two types of comparabilities is, however, not clear because Cantor presented the terms ‘power’ and ‘cardinal number’ as synonyms. We will outline now how these notions feature in Cantor’s writings and how they related to CBT.

References

  1. Cantor G. Ein Beitrag zur Mannigfeltigkeitslehre, (‘1878 Beitrag’). Cantor 1932;119–33.Google Scholar
  2. Cantor G. Mitteilungen zur Lehre von Transfinite, (‘1887 Mitteilungen’). Cantor 1932. 378–439.Google Scholar
  3. Cantor G. Beiträge zur Begründung der transfiniten Mengenlehre, (‘1895 Beiträge’). Cantor 1932;282–311. English translation: Cantor 1915.Google Scholar
  4. Cantor G. Contributions to the founding of the theory of Transfinite Numbers, English version of Cantor 1895 and Cantor 1897, translated by Jourdain PEB. Dover Publications Inc.Google Scholar
  5. Cantor G. Gesammelte Abhandlungen Mathematischen und philosophischen Inhalts, edited by Zermelo E. Springer: Berlin; 1932. http://infini.philosophons.com/.
  6. Cavailles J. Philosophie mathématique. Paris: Hermann; 1962.zbMATHGoogle Scholar
  7. Dauben JW. Georg Cantor. His mathematics and the philosophy of the infinite. Cambridge MA: Harvard University Press; 1979. Reprinted by Princeton University Press; 1990.Google Scholar
  8. Dauben JW. The development of Cantorian set theory. In: Grattan-Guinness I, editor. From the calculus to set theory, 1630–1910: an introductory history, Princeton University Press; 1980.Google Scholar
  9. Ferreirós J. Labyrinth of thought. A history of set theory and its role in modern mathematics. Basel/Boston/Berlin: Birkhäuser; 1999.zbMATHGoogle Scholar
  10. Fraenkel AA. Abstract set theory. 3rd ed. Amsterdam: North Holland; 1966.Google Scholar
  11. Hallett M. Cantorian set theory and limitation of size. Oxford: Clarendon Press; 1984.Google Scholar
  12. Mańka R, Wojciechowska A. On two Cantorian theorems. Annals of the Polish Mathematical Society, Series II: Mathematical News. 1984;25:191–8.zbMATHGoogle Scholar
  13. Medvedev FA. 1966. Ранняя история теоремы эквивалентности (Early history of the equivalence theorem), Ист.-мат. исслед. (Research in the history of mathematics) 1966;17:229–46.Google Scholar
  14. Meschkowski H, Nilsen W. Georg Cantor: briefe. Berlin: Springer; 1991.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.The Cohn Institute for the History and Philosophy of Science and IdeasTel Aviv UniversityTel AvivIsrael

Personalised recommendations