Advertisement

CBT and Intuitionism

  • Arie HinkisEmail author
Chapter
Part of the Science Networks. Historical Studies book series (SNHS, volume 45)

Abstract

We review four sources that presented CBT in an intuitionist context, from which certain modes of reasoning, applied in the proofs of CBT, are expelled: A counterexample by Brouwer from his 1912 inauguration address, a theorem by Myhill his from 1955 paper, counterexamples by Dirk van Dalen from his 1968 paper and a theorem by Troelstra from his 1969 monograph.

Keywords

Natural Number Recursive Function Finite Sequence Mathematical Entity Decimal Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Banach S. Un théorème sur les transformation biunivoques. Fund Math. 1924;6:236–9.Google Scholar
  2. Brouwer LEJ. Intuitionism and formalism. In: Benacerraf P, Putnam H, editors. Philosophy of mathematics: selected readings. 2nd ed. Cambridge: Cambridge University Press; 1983. p. 77–89.Google Scholar
  3. Cantor G. Ein Beitrag zur Mannigfeltigkeitslehre, (‘1878 Beitrag’). Cantor 1932;119–33.Google Scholar
  4. Dekker JCE, Myhill J. Recursive equivalence types. Berkley: University of California Press; 1960.Google Scholar
  5. Dummett MAE. The logical basis of metaphysics. Cambridge: Harvard University Press; 1991.Google Scholar
  6. Fraenkel AA. Abstract set theory. 3rd ed. Amsterdam: North Holland; 1966.Google Scholar
  7. van Heijenoort J. From Frege to Gödel. Cambridge, MA: Harvard University Press; 1967.zbMATHGoogle Scholar
  8. Heyting A. Intuitionism: an introduction. 3rd ed. Amsterdam: North Holland; 1971.zbMATHGoogle Scholar
  9. Kőnig J. Sur le théorie des ensemble. Comptes Rendus Hebdomedaire des Séances de l’Academie des Science, Paris. 1906;143:110–2.Google Scholar
  10. Myhill J. Creative sets. Zeitschrift für mathematische Logik und Grundlagen der Mathematik. 1955;1:97–108.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Poincaré H. “Les mathematiques et la logique”, part II. Revue de Métaphysique et de Morale. 1906a;14:17–34.Google Scholar
  12. Poincaré H. logiques de l’infini, Scientia (Revista di Scientia). 1908;12:1–11. Also in Poincaré 1913 chapter V.Google Scholar
  13. Remmel JB. On the effectiveness of the Schröder-Bernstein theorem. Proc Am Math Soc. 1981;83(2):379–86.MathSciNetzbMATHGoogle Scholar
  14. Rogers Jr H. Theory of recursive functions and effective computability. New York: McGraw-Hill; 1967.zbMATHGoogle Scholar
  15. Schuster P, Zappe J. Über das Kripke-Schema und abzählbare Teilmengen. Logique & Analyse. 2008;204:317–29.MathSciNetGoogle Scholar
  16. Troelstra AS. Principles of intuitionism. Lecture notes in mathematics, Springer; 1969.Google Scholar
  17. Troelstra AS, van Dalen D. Constructivism in mathematics: an Introduction. Amsterdam: North Holland; 1988.Google Scholar
  18. Van Dalen D. A note on spread-cardinals. Compo Math. 1968;20:21–8.zbMATHGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.The Cohn Institute for the History and Philosophy of Science and IdeasTel Aviv UniversityTel AvivIsrael

Personalised recommendations