Advertisement

The Origin of Hausdorff Paradox in BDT

  • Arie HinkisEmail author
Chapter
Part of the Science Networks. Historical Studies book series (SNHS, volume 45)

Abstract

We conclude the third part of our excursion with a presentation of Hausdorff’s paradox, conjecturing on its origin in BDT.

Keywords

Rotation Axis Pairwise Disjoint Subset High Dimension Space Half Turn Double Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Candy AL. The elements of plane and solid analytic geometry. Boston: D.C. Heath & co.; 1904. http://www.archive.org/details/elemplanesolidan00candrich.
  2. Dedekind R. Gesammelte Mathematische Werke. edited by Fricke R, Noether E, Ore O, editors. vol 3 Braunschweig; 1930–32.Google Scholar
  3. Hausdorff F. Grundzuge der Mengenlehre, Berlin; 1914a, reprinted by Chelsea, New York; 1949.Google Scholar
  4. Hausdorff F. Bemerkung über den Inhalt den Punktmengen. Mathematische Annalen. 1914b;75:428–33.MathSciNetCrossRefGoogle Scholar
  5. Kőnig J. Sur le théorie des ensemble. Comptes Rendus Hebdomedaire des Séances de l’Academie des Science, Paris. 1906;143:110–2.Google Scholar
  6. Lakatos I. Proofs and refutations. Cambridge: Cambridge University Press; 1976.zbMATHCrossRefGoogle Scholar
  7. Moore GH. Zermelo’s axiom of choice: its origin, development and influence. Berlin: Springer; 1982.CrossRefGoogle Scholar
  8. Pla i Carrera J. Dedekind and the theory of sets. Modern Logic. 1993;3(3):215–305.MathSciNetzbMATHGoogle Scholar
  9. Pólya G. How to solve it. Princeton University Press; 1945. 2004 edition.Google Scholar
  10. Schoenflies A. Die Entwicklung der Lehre von den Punktmannigfeltigkeiten, I. Jahresbericht der Deutschen Mathematiker-Vereinigung 1900;8.Google Scholar
  11. Schoenflies A. Entwickelung der Mengenlehre und ihrer Anwendung. Leipzig: B. G. Teubner; 1913.Google Scholar
  12. Vitali G. Sui problema della misura dei gruppi di punti di una retta. Bologna: Tipografia Gamberini e Parmeggiani; 1905.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.The Cohn Institute for the History and Philosophy of Science and IdeasTel Aviv UniversityTel AvivIsrael

Personalised recommendations