Advertisement

The Role of CBT in Russell’s Paradox

  • Arie HinkisEmail author
Chapter
Part of the Science Networks. Historical Studies book series (SNHS, volume 45)

Abstract

Russell tells in his 1903 “The principles of mathematics” (POM p 101) that he “was led to it [his paradox] in the endeavor to reconcile Cantor’s proof that there can be no greatest cardinal number with the very plausible supposition that the class of all terms … has necessarily the greatest possible number of members”. Cantor’s proof mentioned here is the proof of Cantor’s Theorem (1892) which, Russell says (p 362), “is found to state that, if u be a class, the number of classes contained in u is greater than the number of terms of u”. The class of all terms thus appeared to Russell as a refutation to Cantor’s Theorem. Russell’s Paradox was thus obtained within a Lakatosian proof-analysis.

Keywords

Relation Counterpart Hide Assumption Diagonal Argument Gestalt Switch Equal Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Banaschewski B, Brümmer GCL. Thoughts of the Cantor-Bernstein theorem. Quaestiones Math. 1986;9:1–27.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Borel E. Leçons sur la théorie des functions, 1950 edition, Gauthiers-Villars: Paris; 1898Google Scholar
  3. Bunn R. Developments in the foundation of mathematics from 1870 to 1910. In: Grattan-Guinness I, editor. From the calculus to set theory, 1630–1910: an introductory history. Princeton: Princeton University Press; 1980.Google Scholar
  4. Cantor G. Über eine elementare Frage der Mannigfaltigkeitslehre, (‘1892 Frage’). Jahresbericht der Deutschen Mathematiker-Vereinigung. 1892;1:75–8. Cantor 1932;278–80. English translation Ewald 1996 vol 2, 920–2.Google Scholar
  5. Coffa JA. The humble origins of Russell’s paradox. Russell: the Journal of Bertrand Russell Studies. 1979;99:31–7.Google Scholar
  6. Crossley J. A note on Cantor’s theorem and Russell’s paradox. AustralasJ Philos. 1973;51:70–1.CrossRefGoogle Scholar
  7. Ewald W. editor. From Kant to Hilbert: a source book in the foundations of mathematics. 2 vols. Oxford: Clarendon Press; 1996.Google Scholar
  8. Ferreirós J. Labyrinth of thought. A history of set theory and its role in modern mathematics. Basel/Boston/Berlin: Birkhäuser; 1999.zbMATHGoogle Scholar
  9. Grattan-Guinness I. How Bertrand Russell discovered his paradox. Hist Math. 1978;5:127–37.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Grattan-Guinness I. The search for mathematical roots, 1870–1940: logics, set theories and the foundations of mathematics from Cantor through Russell and Gödel, Princeton University Press; 2000.Google Scholar
  11. Hessenberg G. Grundbegriffe der Mengenlehre. Abhandlungen der Friesschen Schule. 1906;2(1):479–706. reprinted Göttingen, Vardenhoeck & Ruprecht 1906.Google Scholar
  12. Jourdain PEB. On the comparison of aggregates. Quarterly Journal of Pure and Applied Mathematics. 1907b;38:352–67.Google Scholar
  13. Lakatos I. Proofs and refutations. Cambridge: Cambridge University Press; 1976.zbMATHCrossRefGoogle Scholar
  14. Moore GH. The origins of Russell’s paradox: Russell, Couturat, and the antinomy of infinite number. In: Hintikka J, editor. From Dedekind to Gödel. Dordrecht: Kluwer; 1995. p. 215–39.CrossRefGoogle Scholar
  15. Moore GH, Garciadiego A. Burali-Forti’s Paradox: a reappraisal of its origins. Hist Math. 1981;8:319–50.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Russell B. Introduction to mathematical philosophy. London: George Allen & Unwin; 1919.zbMATHGoogle Scholar
  17. Russell B. My mental development. In: Newman JR, editor. The world of mathematics. New York: Simon and Schuster; 1944. p. 381–94.Google Scholar
  18. Russell B. The collected papers of Bertrand Russell: toward the “principles of mathematics”, 1900–02, vol 3, edited by Moore GH, London: Routledge; 1993.Google Scholar
  19. Schoenflies A. Die Entwicklung der Lehre von den Punktmannigfeltigkeiten, I, Jahresbericht der Deutschen Mathematiker-Vereinigung 1900;8.Google Scholar
  20. Zermelo E. Über die Addition transfiniter Cardinalzahlen, Nachrichten von der Königlich Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse aus dem Jahre 1901;34–8.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.The Cohn Institute for the History and Philosophy of Science and IdeasTel Aviv UniversityTel AvivIsrael

Personalised recommendations