Advertisement

Zermelo’s 1901 Proof of CBT

  • Arie HinkisEmail author
Chapter
Part of the Science Networks. Historical Studies book series (SNHS, volume 45)

Abstract

Zermelo published two proofs of CBT. The first in 1901, in his first paper on set theory, we review in detail in this chapter. The second in 1908, in the paper where Zermelo first presented his axiomatic set theory, we review in  Chap. 23.

Keywords

Cardinal Number Disjoint Copy Reference Cantor Gestalt Switch Infinite Cardinal Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bernstein F. Untersuchungen aus der Mengenlehre. Mathematische Annalen. 1905;61:117–55.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Borel E. Leçons sur la théorie des functions, 1950 edition, Gauthiers-Villars: Paris; 1898.Google Scholar
  3. Cantor G. Ein Beitrag zur Mannigfeltigkeitslehre, (‘1878 Beitrag’). Cantor 1932;119–33.Google Scholar
  4. Cantor G. Gesammelte Abhandlungen Mathematischen und philosophischen Inhalts, edited by Zermelo E. Springer: Berlin; 1932. http://infini.philosophons.com/.
  5. Franklin RW. editor. The poems of Emily Dickinson, 3 vols. Cambridge: Belknap Press; 1999.Google Scholar
  6. Grattan-Guinness I. Dear Russell - dear Jourdain. A commentary on Russell’s logic, based on his correspondence with Philip Jourdain. New York: Columbia University Press; 1977.zbMATHGoogle Scholar
  7. Grattan-Guinness I. The search for mathematical roots, 1870–1940: logics, set theories and the foundations of mathematics from Cantor through Russell and Gödel, Princeton University Press; 2000.Google Scholar
  8. van Heijenoort J. From Frege to Gödel. Cambridge, MA: Harvard University Press; 1967.zbMATHGoogle Scholar
  9. Lakatos I. Proofs and refutations. Cambridge: Cambridge University Press; 1976.zbMATHCrossRefGoogle Scholar
  10. Moore GH. Zermelo’s axiom of choice: its origin, development and influence. Berlin: Springer; 1982.CrossRefGoogle Scholar
  11. Schoenflies A. Die Entwicklung der Lehre von den Punktmannigfeltigkeiten, I. Jahresbericht der Deutschen Mathematiker-Vereinigung 1900;8.Google Scholar
  12. Schröder E. Über Zwei Defitionen der Endlichkeit und G. Cantorsche Sätze, Nova Acta. Abhandlungen der Kaiserlichen Leopold-Carolinschen deutchen Akademie der Naturfoscher. 1898;71:301–62.Google Scholar
  13. Tymoczko T. New directions in the philosophy of mathematics: an anthology. Boston: Birkhäuser; 1986.zbMATHGoogle Scholar
  14. Zermelo E. Über die Addition transfiniter Cardinalzahlen, Nachrichten von der Königlich Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse aus dem Jahre 1901;34–8.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.The Cohn Institute for the History and Philosophy of Science and IdeasTel Aviv UniversityTel AvivIsrael

Personalised recommendations