Advertisement

Cantor’s CBT Proof for Sets of the Power of (II)

  • Arie HinkisEmail author
Chapter
Part of the Science Networks. Historical Studies book series (SNHS, volume 45)

Abstract

Cantor1883 Grundlagen, is Cantor’s most important paper, at least with regard to his theory of infinite numbers. Though the 1895/7 Beiträge is more systematic and contains many more results and details, the core ideas, which Cantor never abandoned, appear in Grundlagen. These include the generation principles of the infinite numbers, the limitation principles, the template for the construction of the scale of number-classes and related results. It is here that we begin to unfold the story of CBT. In the following chapters we will discuss its generalization as well as its earlier beginning.

References

  1. Bernstein F. Untersuchungen aus der Mengenlehre. Mathematische Annalen. 1905;61:117–55.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Borel E. Leçons sur la théorie des functions, 1950 edition, Gauthiers-Villars: Paris; 1898Google Scholar
  3. Cantor G. Grundlagen einer allegmeinen Mannigfaltigkeitslehre, (‘Grundlagen’). Cantor 1932;165–209. English translation: Ewald 1996 vol 2, 881–920. Cf. Parpart 1976.Google Scholar
  4. Cantor G. Beiträge zur Begründung der transfiniten Mengenlehre, (‘1895 Beiträge’). Cantor 1932;282–311. English translation: Cantor 1915.Google Scholar
  5. Cantor G. Contributions to the founding of the theory of Transfinite Numbers, English version of Cantor 1895 and Cantor 1897, translated by Jourdain PEB. Dover Publications Inc.Google Scholar
  6. Cantor G. Gesammelte Abhandlungen Mathematischen und philosophischen Inhalts, edited by Zermelo E. Springer, Berlin 1932. http://infini.philosophons.com/.
  7. Cantor G. Principien einer Theorie der Ordnungstypen, erste Mitteilung, in Grattan-Guinness 1970.Google Scholar
  8. Dauben JW. Georg Cantor. His Mathematics and the Philosophy of the Infinite, Cambridge MA: Harvard University Press; 1979. Reprinted by Princeton University Press, 1990.Google Scholar
  9. Dedekind R. Essays on the theory of numbers, English translation of Dedekind 1888, by Berman WW, New York: Dover; 1963. Also in Ewald 1996 vol 2 p 787–833.Google Scholar
  10. Dugac P. Richard Dedekind et les fondements des mathématiques. Paris: Vrin; 1976.zbMATHGoogle Scholar
  11. Ewald W. editor. From Kant to Hilbert: a source book in the foundations of mathematics. 2 vols. Oxford: Clarendon Press; 1996.Google Scholar
  12. Ferreirós J. Labyrinth of thought. A history of set theory and its role in modern mathematics. Basel/Boston/Berlin: Birkhäuser; 1999.zbMATHGoogle Scholar
  13. Fraenkel AA. Georg Cantor. Jahresbericht der Deutschen Mathematiker-Vereinigung. 1930;39:189–266.zbMATHGoogle Scholar
  14. Fraenkel AA. Abstract set theory. 3rd ed. Amsterdam: North Holland; 1966.Google Scholar
  15. Frege G. Grundlagen der Arithmetik, Breslau: Verlag von Wilhelm Koebner. English translation: J.L. Austin, Oxford, Basil Blackwell, 1950.Google Scholar
  16. Hallett M. Cantorian set theory and limitation of size. Oxford: Clarendon Press; 1984.Google Scholar
  17. Harward AE. On the transfinite numbers. Philosophical Magazine (6). 1905;10(58):439–60.zbMATHCrossRefGoogle Scholar
  18. Hausdorff F. Grundzuge der Mengenlehre, Berlin; 1914a, reprinted by Chelsea, New York; 1949.Google Scholar
  19. Hessenberg G. Grundbegriffe der Mengenlehre. Abhandlungen der Friesschen Schule. 1906;2(1):479–706. reprinted Göttingen, Vardenhoeck & Ruprecht 1906.Google Scholar
  20. Jourdain PEB. On the transfinite cardinal numbers of well-ordered aggregates. Philosophical Magazine (6). 1904a;7(37):61–75.zbMATHCrossRefGoogle Scholar
  21. Jourdain PEB. On the transfinite cardinal numbers of number-classes in general. Philosophical Magazine (6). 1904b;7(39):294–303.zbMATHCrossRefGoogle Scholar
  22. Jourdain PEB. The multiplication of alephs. Mathematische Annalen. 1908a;65:506–12.MathSciNetzbMATHCrossRefGoogle Scholar
  23. Lakatos I. Proofs and refutations. Cambridge: Cambridge University Press; 1976.zbMATHCrossRefGoogle Scholar
  24. Moore GH. The origins of Russell’s paradox: Russell, Couturat, and the antinomy of infinite number. In: Hintikka J, editor. From Dedekind to Gödel. Dordrecht: Kluwer; 1995. p. 215–39.CrossRefGoogle Scholar
  25. Peano G. Arithmetices principia, nova methodo axposita, Turin 1899. English translation (which we reference): van Heijenoort 1967 p 83–97.Google Scholar
  26. Purkert W, Ilgauds HJ. Georg Cantor 1845–1918. Basel: Birkhäuser Verlag; 1987.zbMATHGoogle Scholar
  27. Purkert W. Cantor’s philosophical views on the foundations of mathematics. In: Rowe DE, McCleary J, editors. The history of modern mathematics. Boston: Academic; 1989. p. 49–65.Google Scholar
  28. Schoenflies A. Die Entwicklung der Lehre von den Punktmannigfeltigkeiten, I, Jahresbericht der Deutschen Mathematiker-Vereinigung 1900;8.Google Scholar
  29. Sierpiński W. Sur la division des types ordinaux. Fund Math. 1948;35:1–12.MathSciNetzbMATHGoogle Scholar
  30. Weyl H. Das Kontinuum, English translation 1987 The continuum: a critical examination of the foundation of analysis: Dover 1994.Google Scholar
  31. Zermelo E. Über die Addition transfiniter Cardinalzahlen, Nachrichten von der Königlich Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse aus dem Jahre 1901;34–8.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.The Cohn Institute for the History and Philosophy of Science and IdeasTel Aviv UniversityTel AvivIsrael

Personalised recommendations