Skip to main content

Mouse Models of G-CSF Signaling in Hematopoiesis

  • Chapter
  • First Online:
  • 1014 Accesses

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

To begin to define the role of granulocyte colony-stimulating factor (G-CSF) in the regulation of hematopoiesis, Lieschke and colleagues generated G-CSF−/− (knockout) mice [1]. Knockout mice are genetically engineered to contain a complete loss-of-function (null) mutation of the gene of interest. They are generated by homologous recombination in murine embryonic stem cells in which the normal gene (in this case Csf3 encoding G-CSF) is replaced with a mutated gene. The targeted embryonic stem cells are implanted into pseudopregnant mice to generate a transgenic mouse line carrying the mutated gene. Importantly, the rest of the murine genome is intact, allowing investigators to examine the effect of the loss of that gene, in isolation, on a biologic process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lieschke GJ, Grail D, Hodgson G et al (1994) Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84:1737–1746

    PubMed  CAS  Google Scholar 

  2. Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC (1996) Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5:491–501

    Article  PubMed  CAS  Google Scholar 

  3. Walker F, Zhang HH, Matthews V et al (2008) IL6/sIL6R complex contributes to emergency granulopoietic responses in G-CSF- and GM-CSF-deficient mice. Blood 111:3978–3985

    Article  PubMed  CAS  Google Scholar 

  4. Seymour JF, Lieschke GJ, Grail D, Quilici C, Hodgson G, Dunn AR (1997) Mice lacking both granulocyte colony-stimulating factor (CSF) and granulocyte-macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amyloidosis, and reduced long-term survival. Blood 90:3037–3049

    PubMed  CAS  Google Scholar 

  5. Dalrymple SA, Lucian LA, Slattery R et al (1995) Interleukin-6-deficient mice are highly susceptible to Listeria monocytogenes infection: correlation with inefficient neutrophilia. Infect Immun 63:2262–2268

    PubMed  CAS  Google Scholar 

  6. Romani L, Mencacci A, Cenci E et al (1996) Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin 6-deficient mice infected with Candida albicans. J Exp Med 183:1345–1355

    Article  PubMed  CAS  Google Scholar 

  7. Liu F, Poursine-Laurent J, Wu HY, Link DC (1997) Interleukin-6 and the granulocyte colony-stimulating factor receptor are major independent regulators of granulopoiesis in vivo but are not required for lineage commitment or terminal differentiation. Blood 90:2583–2590

    PubMed  CAS  Google Scholar 

  8. Kaushansky K, Fox N, Lin NL, Liles WC (2002) Lineage-specific growth factors can compensate for stem and progenitor cell deficiencies at the postprogenitor cell level: an analysis of doubly TPO- and G-CSF receptor-deficient mice. Blood 99:3573–3578

    Article  PubMed  CAS  Google Scholar 

  9. Quinton LJ, Nelson S, Boe DM et al (2002) The granulocyte colony-stimulating factor response after intrapulmonary and systemic bacterial challenges. J Infect Dis 185:1476–1482

    Article  PubMed  CAS  Google Scholar 

  10. Kawakami M, Tsutsumi H, Kumakawa T et al (1990) Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood 76:1962–1964

    PubMed  CAS  Google Scholar 

  11. Basu S, Hodgson G, Zhang HH, Katz M, Quilici C, Dunn AR (2000) “Emergency” granulopoiesis in G-CSF-deficient mice in response to Candida albicans infection. Blood 95:3725–3733

    PubMed  CAS  Google Scholar 

  12. Zhan Y, Lieschke GJ, Grail D, Dunn AR, Cheers C (1998) Essential roles for granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF in the sustained hematopoietic response of Listeria monocytogenes-infected mice. Blood 91:863–869

    PubMed  CAS  Google Scholar 

  13. Gregory AD, Hogue LA, Ferkol TW, Link DC (2007) Regulation of systemic and local neutrophil responses by G-CSF during pulmonary Pseudomonas aeruginosa infection. Blood 109:3235–3243

    Article  PubMed  CAS  Google Scholar 

  14. Dong F, van Buitenen C, Pouwels K, Hoefsloot LH, Lowenberg B, Touw IP (1993) Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation. Mol Cell Biol 13:7774–7781

    PubMed  CAS  Google Scholar 

  15. Yoshikawa A, Murakami H, Nagata S (1995) Distinct signal transduction through the tyrosine containing domains of the granulocyte colony-stimulating factor receptor. EMBO 14:5288–5296

    CAS  Google Scholar 

  16. Semerad CL, Christopher MJ, Liu F et al (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106:3020–3027

    Article  PubMed  CAS  Google Scholar 

  17. Stoffel R, Ziegler S, Ghilardi N, Ledermann B, de Sauvage FJ, Skoda RC (1999) Permissive role of thrombopoietin and granulocyte colony-stimulating factor receptors in hematopoietic cell fate decisions in vivo. Proc Natl Acad Sci U S A 96:698–702

    Article  PubMed  CAS  Google Scholar 

  18. Jacob J, Haug JS, Raptis S, Link DC (1998) Specific signals generated by the cytoplasmic domain of the granulocyte colony-stimulating factor (G-CSF) receptor are not required for G-CSF-dependent granulocytic differentiation. Blood 92:353–361

    PubMed  CAS  Google Scholar 

  19. Yang FC, Tsuji K, Oda A et al (1999) Differential effects of human granulocyte colony-stimulating factor (hG-CSF) and thrombopoietin on megakaryopoiesis and platelet function in hG-CSF receptor-transgenic mice. Blood 94:950–958

    PubMed  CAS  Google Scholar 

  20. Richards MK, Liu F, Link DC (2001) G-CSF receptor signals may play a pivotal role in directing commitment to the common myeloid lineage. Blood 98:795a

    Article  Google Scholar 

  21. O’Grady NP, Preas HL, Pugin J et al (2001) Local inflammatory responses following bronchial endotoxin instillation in humans. Am J Respir Crit Care Med 163:1591–1598

    PubMed  Google Scholar 

  22. de Haas M, Kerst JM, van der Schoot CE et al (1994) Granulocyte colony-stimulating factor administration to healthy volunteers: analysis of the immediate activating effects on circulating neutrophils. Blood 84:3885–3894

    PubMed  Google Scholar 

  23. Hoglund M, Hakansson L, Venge P (1987) Effects of in vivo administration of G-CSF on neutrophil functions in healthy volunteers. Eur J Haematol 58:195–202

    Article  Google Scholar 

  24. Yuo A, Kitagawa S, Ohsaka A et al (1989) Recombinant human granulocyte colony-stimulating factor as an activator of human granulocytes: potentiation of responses triggered by receptor-mediated agonists and stimulation of C3bi receptor expression and adherence. Blood 74:2144–2149

    PubMed  CAS  Google Scholar 

  25. Yong KL (1996) Granulocyte colony-stimulating factor (G-CSF) increases neutrophil migration across vascular endothelium independent of an effect on adhesion: comparison with granulocyte-macrophage colony-stimulating factor (GM-CSF). Br J Haematol 94:40–47

    Article  PubMed  CAS  Google Scholar 

  26. Metcalf D, Robb L, Dunn AR, Mifsud S, Di Rago L (1996) Role of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in the development of an acute neutrophil inflammatory response in mice. Blood 88:3755–3764

    PubMed  CAS  Google Scholar 

  27. Betsuyaku T, Liu F, Senior RM et al (1999) A functional granulocyte colony-stimulating factor receptor is required for normal chemoattractant-induced neutrophil activation. J Clin Invest 103:825–832

    Article  PubMed  CAS  Google Scholar 

  28. Eyles JL, Hickey MJ, Norman MU et al (2008) A key role for G-CSF-induced neutrophil production and trafficking during inflammatory arthritis. Blood 112:5193–5201

    Article  PubMed  CAS  Google Scholar 

  29. McKinstry WJ, Li CL, Rasko JE, Nicola NA, Johnson GR, Metcalf D (1997) Cytokine receptor expression on hematopoietic stem and progenitor cells. Blood 89:65–71

    PubMed  CAS  Google Scholar 

  30. Zandstra PW, Conneally E, Petzer AL, Piret JM, Eaves CJ (1997) Cytokine manipulation of primitive human hematopoietic cell self-renewal. Proc Natl Acad Sci U S A 94:4698–4703

    Article  PubMed  CAS  Google Scholar 

  31. Gibbs KD Jr, Gilbert PM, Sachs K et al (2011) Single-cell phospho-specific flow cytometric analysis demonstrates biochemical and functional heterogeneity in human hematopoietic stem and progenitor compartments. Blood 117(16):4226–4233

    Article  PubMed  CAS  Google Scholar 

  32. Rosenberg PS, Alter BP, Link DC et al (2008) Neutrophil elastase mutations and risk of leukaemia in severe congenital neutropenia. Br J Haematol 140:210–213

    PubMed  CAS  Google Scholar 

  33. Link DC, Kunter G, Kasai Y et al (2007) Distinct patterns of mutations occurring in de novo AML versus AML arising in the setting of severe congenital neutropenia. Blood 110:1648–1655

    Article  PubMed  CAS  Google Scholar 

  34. Bernard T, Gale RE, Linch DC (1996) Analysis of granulocyte colony stimulating factor receptor isoforms, polymorphisms and mutations in normal haemopoietic cells and acute myeloid leukaemia blasts. Br J Haematol 93:527–533

    Article  PubMed  CAS  Google Scholar 

  35. Carapeti M, Soede-Bobok A, Hochhaus A et al (1997) Rarity of dominant-negative mutations of the G-CSF receptor in patients with blast crisis of chronic myeloid leukemia or de novo acute leukemia. Leukemia 11:1005–1008

    Article  PubMed  CAS  Google Scholar 

  36. Dong F, Brynes RK, Tidow N, Welte K, Lowenberg B, Touw IP (1995) Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med 333:487–493

    Article  PubMed  CAS  Google Scholar 

  37. Germeshausen M, Ballmaier M, Welte K (2007) Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long-term survey. Blood 109:93–99

    Article  PubMed  CAS  Google Scholar 

  38. Hermans MH, Ward AC, Antonissen C, Karis A, Lowenberg B, Touw IP (1999) Perturbed granulopoiesis in mice with a targeted mutation in the granulocyte colony-stimulating factor receptor gene associated with severe chronic neutropenia. Blood 92:32–39

    Google Scholar 

  39. McLemore ML, Poursine-Laurent J, Link DC (1998) Increased granulocyte colony-stimulating factor responsiveness but normal resting granulopoiesis in mice carrying a targeted granulocyte colony-stimulating factor receptor mutation derived from a patient with severe congenital neutropenia. J Clin Invest 102:483–492

    Article  PubMed  CAS  Google Scholar 

  40. van de Geijn GJ, Gits J, Aarts LH, Heijmans-Antonissen C, Touw IP (2004) G-CSF receptor truncations found in SCN/AML relieve SOCS3-controlled inhibition of STAT5 but leave suppression of STAT3 intact. Blood 104:667–674

    Article  PubMed  Google Scholar 

  41. Hermans MH, Antonissen C, Ward AC, Mayen AE, Ploemacher RE, Touw IP (1999) Sustained receptor activation and hyperproliferation in response to granulocyte colony-stimulating factor (G-CSF) in mice with a severe congenital neutropenia/acute myeloid leukemia-derived mutation in the G-CSF receptor gene. J Exp Med 189:683–692

    Article  PubMed  CAS  Google Scholar 

  42. Ancliff PJ, Gale RE, Liesner R, Hann I, Linch DC (2003) Long-term follow-up of granulocyte colony-stimulating factor receptor mutations in patients with severe congenital neutropenia: implications for leukaemogenesis and therapy. Br J Haematol 120:685–690

    Article  PubMed  CAS  Google Scholar 

  43. Germeshausen M, Ballmaier M, Welte K (2009) In vivo growth advantage of cells expressing acquired CSF3R mutations in patients with severe congenital neutropenia. Blood 113:668–670

    Article  PubMed  CAS  Google Scholar 

  44. Liu F, Kunter G, Krem MM et al (2008) Csf3r mutations in mice confer a strong clonal HSC advantage via activation of Stat5. J Clin Invest 118:946–955

    PubMed  CAS  Google Scholar 

  45. McLemore ML, Grewal S, Liu F et al (2001) STAT-3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation. Immunity 14:193–204

    Article  PubMed  CAS  Google Scholar 

  46. Stem Cell Trialists’ Collaborative Group (2005) Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials. J Clin Oncol 23:5074–5087

    Article  Google Scholar 

  47. Demetri GD, Griffin JD (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78:2791–2808

    PubMed  CAS  Google Scholar 

  48. Bussolino F, Ziche M, Wang JM et al (1991) In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 87:986–995

    Article  PubMed  CAS  Google Scholar 

  49. Liu F, Poursine-Laurent J, Link DC (1997) The granulocyte colony-stimulating factor receptor is required for the mobilization of murine hematopoietic progenitors into peripheral blood by cyclophosphamide or interleukin-8 but not flt-3 ligand. Blood 90:2522–2528

    PubMed  CAS  Google Scholar 

  50. Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC (2011) Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 208:251–260

    Article  PubMed  CAS  Google Scholar 

  51. Chow A, Lucas D, Hidalgo A et al (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208:261–271

    Article  PubMed  CAS  Google Scholar 

  52. Winkler IG, Sims NA, Pettit AR et al (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116:4815–4828

    Article  PubMed  CAS  Google Scholar 

  53. Kollet O, Dar A, Shivtiel S et al (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12:657–664

    Article  PubMed  CAS  Google Scholar 

  54. Takamatsu Y, Simmons PJ, Moore RJ, Morris HA, To LB, Levesque J-P (1998) Osteoclast-mediated bone resorption is itimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood 92:3465–3473

    PubMed  CAS  Google Scholar 

  55. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  PubMed  CAS  Google Scholar 

  56. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988

    Article  PubMed  CAS  Google Scholar 

  57. Yoshimoto M, Shinohara T, Heike T, Shiota M, Kanatsu-Shinohara M, Nakahata T (2003) Direct visualization of transplanted hematopoietic cell reconstitution in intact mouse organs indicates the presence of a niche. Exp Hematol 31:733–740

    Article  PubMed  Google Scholar 

  58. Nilsson SK, Johnston HM, Coverdale JA (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97:2293–2299

    Article  PubMed  CAS  Google Scholar 

  59. Lo Celso C, Fleming HE, Wu JW et al (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–96

    Article  PubMed  CAS  Google Scholar 

  60. Xie Y, Yin T, Wiegraebe W et al (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457:97–101

    Article  PubMed  CAS  Google Scholar 

  61. Calvi LM, Adams GB, Weibrecht KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  PubMed  CAS  Google Scholar 

  62. Zhang J, Niu C, Ye L et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    Article  PubMed  CAS  Google Scholar 

  63. Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103:3258–3264

    Article  PubMed  CAS  Google Scholar 

  64. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185:111–120

    Article  PubMed  CAS  Google Scholar 

  65. Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL (2002) Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med 195:1145–1154

    Article  PubMed  CAS  Google Scholar 

  66. Nagasawa T, Hirota S, Tachibana K et al (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638

    Article  PubMed  CAS  Google Scholar 

  67. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    Article  PubMed  CAS  Google Scholar 

  68. Ma Q, Jones D, Springer TA (1999) The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10:463–471

    Article  PubMed  CAS  Google Scholar 

  69. Christopher MJ, Liu F, Hilton MJ, Long F, Link DC (2009) Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood 114:1331–1339

    Article  PubMed  CAS  Google Scholar 

  70. Broxmeyer HE, Kohli L, Kim CH et al (2003) Stromal cell-derived factor-1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and G(alpha)i proteins and enhances engraftment of competitive, repopulating stem cells. J Leukoc Biol 73:630–638

    Article  PubMed  CAS  Google Scholar 

  71. Liles WC, Broxmeyer HE, Rodger E et al (2003) Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102:2728–2730

    Article  PubMed  CAS  Google Scholar 

  72. Froberg MK, Garg UC, Stroncek DF, Geis M, McCullough J, Brown DM (1999) Changes in serum osteocalcin and bone-specific alkaline phosphatase are associated with bone pain in donors receiving granulocyte-colony-stimulating factor for peripheral blood stem and progenitor cell collection. Transfusion 39:410–414

    Article  PubMed  CAS  Google Scholar 

  73. Katayama Y, Battista M, Kao WM et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421

    Article  PubMed  CAS  Google Scholar 

  74. Mayack SR, Wagers AJ (2008) Osteolineage niche cells initiate hematopoietic stem cell mobilization. Blood 112:519–531

    Article  PubMed  CAS  Google Scholar 

  75. Nervi B, Ramirez P, Rettig MP et al (2009) Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113:6206–6214

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

DCL is supported by grants from the NIH (RO1 CA136617; RC2 CA1455073; and RO1 HL60772) and by the Leukemia & Lymphoma Society TRA 6030-10). The author thanks Mahil Rao for the generation of Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C Link .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Link, D.C. (2012). Mouse Models of G-CSF Signaling in Hematopoiesis. In: Molineux, G., Foote, M., Arvedson, T. (eds) Twenty Years of G-CSF. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0218-5_3

Download citation

Publish with us

Policies and ethics