Advertisement

Pyroptosis: A Caspase-1-Dependent Programmed Cell Death and a Barrier to Infection

  • Katherine Labbé
  • Maya Saleh
Chapter
Part of the Progress in Inflammation Research book series (PIR)

Abstract

Infection elicits a number of innate protective responses in the host that cooperate to promote effective pathogen clearance. Increasingly, the inflammatory response to infection appears to be coupled to cell death as an important mediator of host defence. In this chapter we review the modalities of “pyroptosis”, a highly inflammatory form of cell death mediated by the inflammasome and caspase-1 activation. Occurring in the context of infection, pyroptosis is morphologically, mechanistically and physiologically distinct from other forms of cell death. The pathogenic factors that initiate pyroptosis and the cellular mechanisms and signalling pathways responsible for its execution are examined, with a focus on the role of the inflammasome in these processes. Finally, we discuss the possible physiological significance of this unique form of cell death during infection, that is, how pyroptosis can favour pathogen elimination on one hand, while contributing to the pathophysiology of disease on the other.

Keywords

Cell Death Pathway Autophagic Cell Death Lethal Factor Mitochondrial Outer Membrane Permeabilization Francisella Tularensis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Dr. Emad Alnemri, Kimmel Cancer Institute, Thomas Jefferson University for providing us with the images in Fig. 2, reproduced with permission from Nature Publishing Group, Macmillan Publishers Ltd: Labbé K, Saleh M (2008) Cell death in the host response to infection. Cell Death Differ 15(9):1339–1349, copyright 2008.

References

  1. 1.
    Zitvogel L, Kroemer G (2008) The immune response against dying tumor cells: avoid disaster, achieve cure. Cell Death Differ 15:1–2PubMedCrossRefGoogle Scholar
  2. 2.
    Fairbairn IP (2004) Macrophage apoptosis in host immunity to mycobacterial infections. Biochem Soc Trans 32:496–498PubMedCrossRefGoogle Scholar
  3. 3.
    Clifton DR, Goss RA, Sahni SK, van Antwerp D, Baggs RB, Marder VJ, Silverman DJ, Sporn LA (1998) NF-kappa B-dependent inhibition of apoptosis is essential for host cellsurvival during Rickettsia rickettsii infection. Proc Natl Acad Sci U S A 95:4646–4651PubMedCrossRefGoogle Scholar
  4. 4.
    Fan T, Lu H, Hu H, Shi L, McClarty GA, Nance DM, Greenberg AH, Zhong G (1998) Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 187:487–496PubMedCrossRefGoogle Scholar
  5. 5.
    Hanna PC, Acosta D, Collier RJ (1993) On the role of macrophages in anthrax. Proc Natl Acad Sci U S A 90:10198–10201PubMedCrossRefGoogle Scholar
  6. 6.
    Kato S, Muro M, Akifusa S, Hanada N, Semba I, Fujii T, Kowashi Y, Nishihara T (1995) Evidence for apoptosis of murine macrophages by Actinobacillus actinomycetemcomitans infection. Infect Immun 63:3914–3919PubMedGoogle Scholar
  7. 7.
    Taichman NS, Dean RT, Sanderson CJ (1980) Biochemical and morphological characterization of the killing of human monocytes by a leukotoxin derived from Actinobacillus actinomycetemcomitans. Infect Immun 28:258–268PubMedGoogle Scholar
  8. 8.
    Kochi SK, Collier RJ (1993) DNA fragmentation and cytolysis in U937 cells treated with diphtheria toxin or other inhibitors of protein synthesis. Exp Cell Res 208:296–302PubMedCrossRefGoogle Scholar
  9. 9.
    Morimoto H, Bonavida B (1992) Diphtheria toxin- and Pseudomonas A toxin-mediated apoptosis. ADP ribosylation of elongation factor-2 is required for DNA fragmentation and cell lysis and synergy with tumor necrosis factor-alpha. J Immunol 149:2089–2094PubMedGoogle Scholar
  10. 10.
    Khelef N, Zychlinsky A, Guiso N (1993) Bordetella pertussis induces apoptosis in macrophages: role of adenylate cyclase-hemolysin. Infect Immun 61:4064–4071PubMedGoogle Scholar
  11. 11.
    Lee MS, Kim YJ (2007) Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem 76:447–480PubMedCrossRefGoogle Scholar
  12. 12.
    Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9:358–361Google Scholar
  13. 13.
    Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM, Ricci JE, Edris WA, Sutherlin DP, Green DR et al (2003) A unified model for apical caspase activation. Mol Cell 11:529–541PubMedCrossRefGoogle Scholar
  14. 14.
    Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629PubMedCrossRefGoogle Scholar
  15. 15.
    Ekert PG, Vaux DL (2005) The mitochondrial death squad: hardened killers or innocent bystanders? Curr Opin Cell Biol 17:626–630PubMedCrossRefGoogle Scholar
  16. 16.
    Riedl SJ, Salvesen GS (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8:405–413PubMedCrossRefGoogle Scholar
  17. 17.
    Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10:26–35PubMedCrossRefGoogle Scholar
  18. 18.
    Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477PubMedCrossRefGoogle Scholar
  19. 19.
    Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11PubMedCrossRefGoogle Scholar
  20. 20.
    Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32:37–43PubMedCrossRefGoogle Scholar
  21. 21.
    Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714Google Scholar
  22. 22.
    Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774PubMedCrossRefGoogle Scholar
  23. 23.
    Ayala JM, Yamin TT, Egger LA, Chin J, Kostura MJ, Miller DK (1994) IL-1 beta-converting enzyme is present in monocytic cells as an inactive 45-kDa precursor. J Immunol 153:2592–2599PubMedGoogle Scholar
  24. 24.
    Thornberry NA (1994) Interleukin-1 beta converting enzyme. Methods Enzymol 244:615–631PubMedCrossRefGoogle Scholar
  25. 25.
    Sleath PR, Hendrickson RC, Kronheim SR, March CJ, Black RA (1990) Substrate specificity of the protease that processes human interleukin-1 beta. J Biol Chem 265:14526–14528PubMedGoogle Scholar
  26. 26.
    Kuida K, Lippke JA, Ku G, Harding MW, Livingston DJ, Su MS, Flavell RA (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267:2000–2003PubMedCrossRefGoogle Scholar
  27. 27.
    Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C, McDowell J, Paskind M, Rodman L, Salfeld J et al (1995) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80:401–411PubMedCrossRefGoogle Scholar
  28. 28.
    Arend WP, Palmer G, Gabay C (2008) IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev 223:20–38PubMedCrossRefGoogle Scholar
  29. 29.
    Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7:31–40PubMedCrossRefGoogle Scholar
  30. 30.
    Chen Y, Smith MR, Thirumalai K, Zychlinsky A (1996) A bacterial invasin induces macrophage apoptosis by binding directly to ICE. Embo J 15:3853–3860PubMedGoogle Scholar
  31. 31.
    Mathan MM, Mathan VI (1991) Morphology of rectal mucosa of patients with shigellosis. Rev Infect Dis 13 Suppl 4: S314-318PubMedCrossRefGoogle Scholar
  32. 32.
    Zychlinsky A, Prevost MC, Sansonetti PJ (1992) Shigella flexneri induces apoptosis in infected macrophages. Nature 358:167–169PubMedCrossRefGoogle Scholar
  33. 33.
    Hilbi H, Chen Y, Thirumalai K, Zychlinsky A (1997) The interleukin 1beta-converting enzyme, caspase 1, is activated during Shigella flexneri-induced apoptosis in human monocyte-derived macrophages. Infect Immun 65:5165–5170PubMedGoogle Scholar
  34. 34.
    Hilbi H, Moss JE, Hersh D, Chen Y, Arondel J, Banerjee S, Flavell RA, Yuan J, Sansonetti PJ, Zychlinsky A (1998) Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 273:32895–32900PubMedCrossRefGoogle Scholar
  35. 35.
    Brennan MA, Cookson BT (2000) Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol 38:31–40PubMedCrossRefGoogle Scholar
  36. 36.
    Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A (1999) The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci U S A 96:2396–2401PubMedCrossRefGoogle Scholar
  37. 37.
    Lara-Tejero M, Sutterwala FS, Ogura Y, Grant EP, Bertin J, Coyle AJ, Flavell RA, Galan JE (2006) Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med 203:1407–1412PubMedCrossRefGoogle Scholar
  38. 38.
    Jesenberger V, Procyk KJ, Yuan J, Reipert S, Baccarini M (2000) Salmonella-induced caspase-2 activation in macrophages: a novel mechanism in pathogen-mediated apoptosis. J Exp Med 192:1035–1046PubMedCrossRefGoogle Scholar
  39. 39.
    Cervantes J, Nagata T, Uchijima M, Shibata K, Koide Y (2008) Intracytosolic Listeria monocytogenes induces cell death through caspase-1 activation in murine macrophages. Cell Microbiol 10:41–52PubMedGoogle Scholar
  40. 40.
    Molofsky AB, Byrne BG, Whitfield NN, Madigan CA, Fuse ET, Tateda K, Swanson MS (2006) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203:1093–1104PubMedCrossRefGoogle Scholar
  41. 41.
    Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE, Kuida K, Mariathasan S, Dixit VM, Flavell RA et al (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7:318–325PubMedCrossRefGoogle Scholar
  42. 42.
    Bergsbaken T, Cookson BT (2007) Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog 3:e161PubMedCrossRefGoogle Scholar
  43. 43.
    Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA (2007) Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204:3235–3245PubMedCrossRefGoogle Scholar
  44. 44.
    Sun GW, Lu J, Pervaiz S, Cao WP, Gan YH (2005) Caspase-1 dependent macrophage death induced by Burkholderia pseudomallei. Cell Microbiol 7:1447–1458PubMedCrossRefGoogle Scholar
  45. 45.
    Mariathasan S, Weiss DS, Dixit VM, Monack DM (2005) Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J Exp Med 202:1043–1049PubMedCrossRefGoogle Scholar
  46. 46.
    Dinarello CA (1992) Role of interleukin-1 in infectious diseases. Immunol Rev 127:119–146PubMedCrossRefGoogle Scholar
  47. 47.
    Monack DM, Navarre WW, Falkow S (2001) Salmonella-induced macrophage death: the role of caspase-1 in death and inflammation. Microbes Infect 3:1201–1212PubMedCrossRefGoogle Scholar
  48. 48.
    Fantuzzi G, Zheng H, Faggioni R, Benigni F, Ghezzi P, Sipe JD, Shaw AR, Dinarello CA (1996) Effect of endotoxin in IL-1 beta-deficient mice. J Immunol 157:291–296PubMedGoogle Scholar
  49. 49.
    Sarkar A, Hall MW, Exline M, Hart J, Knatz N, Gatson NT, Wewers MD (2006) Caspase-1 regulates Escherichia coli sepsis and splenic B cell apoptosis independently of interleukin-1beta and interleukin-18. Am J Respir Crit Care Med 174:1003–1010PubMedCrossRefGoogle Scholar
  50. 50.
    Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9:113–114PubMedCrossRefGoogle Scholar
  51. 51.
    Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J, Alnemri ES (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604PubMedCrossRefGoogle Scholar
  52. 52.
    Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241PubMedCrossRefGoogle Scholar
  53. 53.
    Fink SL, Cookson BT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8:1812–1825PubMedCrossRefGoogle Scholar
  54. 54.
    Ha HC, Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A 96:13978–13982PubMedCrossRefGoogle Scholar
  55. 55.
    Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh M (2007) The Caspase-1 Digestome Identifies the Glycolysis Pathway as a Target during Infection and Septic Shock. J Biol Chem 282:36321–36329PubMedCrossRefGoogle Scholar
  56. 56.
    Malireddi RK, Ippagunta S, Lamkanfi M, Kanneganti TD Cutting edge: proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes. J Immunol 185:3127–3130Google Scholar
  57. 57.
    Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99PubMedCrossRefGoogle Scholar
  58. 58.
    Lamkanfi M, Kanneganti TD, Van Damme P, Vanden Berghe T, Vanoverberghe I, Vandekerckhove J, Vandenabeele P, Gevaert K, Nunez G (2008) Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics 7:2350–2363PubMedCrossRefGoogle Scholar
  59. 59.
    Akhter A, Gavrilin MA, Frantz L, Washington S, Ditty C, Limoli D, Day C, Sarkar A, Newland C, Butchar J et al (2009) Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection. PLoS Pathog 5: e1000361PubMedCrossRefGoogle Scholar
  60. 60.
    Brodsky IE, Monack D (2009) NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol 21:199–207PubMedCrossRefGoogle Scholar
  61. 61.
    Wilkins C, Gale M, Jr. Recognition of viruses by cytoplasmic sensors. Curr Opin ImmunolGoogle Scholar
  62. 62.
    Labbe K, Miu J, Yeretssian G, Serghides L, Tam M, Finney CA, Erdman LK, Goulet ML, Kain KC, Stevenson MM et al (2010) Caspase-12 Dampens the Immune Response to Malaria Independently of the Inflammasome by Targeting NF-{kappa}B Signaling. J ImmunolGoogle Scholar
  63. 63.
    McIntire CR, Yeretssian G, Saleh M (2009) Inflammasomes in infection and inflammation. Apoptosis 14:522–535PubMedCrossRefGoogle Scholar
  64. 64.
    Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7:569–575PubMedCrossRefGoogle Scholar
  65. 65.
    Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A 107:3076–3080PubMedCrossRefGoogle Scholar
  66. 66.
    Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218PubMedCrossRefGoogle Scholar
  67. 67.
    Franchi L, Stoolman J, Kanneganti TD, Verma A, Ramphal R, Nunez G (2007) Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 37:3030–3039PubMedCrossRefGoogle Scholar
  68. 68.
    Miao EA, Ernst RK, Dors M, Mao DP, Aderem A (2008) Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc Natl Acad Sci U S A 105:2562–2567PubMedCrossRefGoogle Scholar
  69. 69.
    Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Inohara N, Sasakawa C, Nunez G (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3: e111PubMedCrossRefGoogle Scholar
  70. 70.
    Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A et al (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7:576–582PubMedCrossRefGoogle Scholar
  71. 71.
    Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232PubMedCrossRefGoogle Scholar
  72. 72.
    Case CL, Shin S, Roy CR (2009) Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infect Immun 77:1981–1991PubMedCrossRefGoogle Scholar
  73. 73.
    Lightfield KL, Persson J, Brubaker SW, Witte CE, von Moltke J, Dunipace EA, Henry T, Sun YH, Cado D, Dietrich WF et al (2008) Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9:1171–1178PubMedCrossRefGoogle Scholar
  74. 74.
    Silveira TN, Zamboni DS. Pore formation triggered by Legionella is an Nlrc4 inflammasome-dependent host cell response that precedes pyroptosis. Infect ImmunGoogle Scholar
  75. 75.
    Diez E, Lee SH, Gauthier S, Yaraghi Z, Tremblay M, Vidal S, Gros P (2003) Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33:55–60PubMedCrossRefGoogle Scholar
  76. 76.
    Young JA, Collier RJ (2007) Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 76:243–265PubMedCrossRefGoogle Scholar
  77. 77.
    Chopra AP, Boone SA, Liang X, Duesbery NS (2003) Anthrax lethal factor proteolysis and inactivation of MAPK kinase. J Biol Chem 278:9402–9406PubMedCrossRefGoogle Scholar
  78. 78.
    Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38:240–244PubMedCrossRefGoogle Scholar
  79. 79.
    Kang TJ, Basu S, Zhang L, Thomas KE, Vogel SN, Baillie L, Cross AS (2008) Bacillus anthracis spores and lethal toxin induce IL-1beta via functionally distinct signaling pathways. Eur J Immunol 38:1574–1584PubMedCrossRefGoogle Scholar
  80. 80.
    Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J (2008) The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103–107PubMedCrossRefGoogle Scholar
  81. 81.
    Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, Fitzgerald KA (2009) An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5:487–497PubMedCrossRefGoogle Scholar
  82. 82.
    Gross O, Poeck H, Bscheider M, Dostert C, Hannesschlager N, Endres S, Hartmann G, Tardivel A, Schweighoffer E, Tybulewicz V et al (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436PubMedCrossRefGoogle Scholar
  83. 83.
    Duncan JA, Gao X, Huang MT, O'Connor BP, Thomas CE, Willingham SB, Bergstralh DT, Jarvis GA, Sparling PF, Ting JP (2009) Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J Immunol 182:6460–6469PubMedCrossRefGoogle Scholar
  84. 84.
    Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856PubMedCrossRefGoogle Scholar
  85. 85.
    Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677PubMedCrossRefGoogle Scholar
  86. 86.
    Li H, Willingham SB, Ting JP, Re F (2008) Cutting edge: inflammasome activation by alum and alum's adjuvant effect are mediated by NLRP3. J Immunol 181:17–21PubMedGoogle Scholar
  87. 87.
    Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241PubMedCrossRefGoogle Scholar
  88. 88.
    Yamasaki K, Muto J, Taylor KR, Cogen AL, Audish D, Bertin J, Grant EP, Coyle AJ, Misaghi A, Hoffman HM et al (2009) NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem 284:12762–12771PubMedCrossRefGoogle Scholar
  89. 89.
    Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865PubMedCrossRefGoogle Scholar
  90. 90.
    Willingham SB, Bergstralh DT, O'Connor W, Morrison AC, Taxman DJ, Duncan JA, Barnoy S, Venkatesan MM, Flavell RA, Deshmukh M et al (2007) Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2:147–159PubMedCrossRefGoogle Scholar
  91. 91.
    Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195PubMedCrossRefGoogle Scholar
  92. 92.
    Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MT, Taxman DJ, Duncan JA, Ting JP (2009) NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol 183:2008–2015PubMedCrossRefGoogle Scholar
  93. 93.
    Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H, Planyavsky M, Bilban M, Colinge J, Bennett KL et al (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10:266–272PubMedCrossRefGoogle Scholar
  94. 94.
    Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513PubMedCrossRefGoogle Scholar
  95. 95.
    Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518PubMedCrossRefGoogle Scholar
  96. 96.
    Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, Hardy LL, Garceau V, Sweet MJ, Ross IL et al (2009) HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323:1057–1060PubMedCrossRefGoogle Scholar
  97. 97.
    Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J, Datta P, McCormick M, Huang L, McDermott E et al (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11:385–393PubMedCrossRefGoogle Scholar
  98. 98.
    Sauer JD, Witte CE, Zemansky J, Hanson B, Lauer P, Portnoy DA (2010) Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe 7:412–419PubMedCrossRefGoogle Scholar
  99. 99.
    Broz P, von Moltke J, Jones JW, Vance RE, Monack DM Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8:471–483Google Scholar
  100. 100.
    Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ, Yang H (2006) HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26:174–179PubMedCrossRefGoogle Scholar
  101. 101.
    Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558–561PubMedGoogle Scholar
  102. 102.
    Hefeneider SH, Cornell KA, Brown LE, Bakke AC, McCoy SL, Bennett RM (1992) Nucleosomes and DNA bind to specific cell-surface molecules on murine cells and induce cytokine production. Clin Immunol Immunopathol 63:245–251PubMedCrossRefGoogle Scholar
  103. 103.
    Schotte P, Denecker G, Van Den Broeke A, Vandenabeele P, Cornelis GR, Beyaert R (2004) Targeting Rac1 by the Yersinia effector protein YopE inhibits caspase-1-mediated maturation and release of interleukin-1beta. J Biol Chem 279:25134–25142PubMedCrossRefGoogle Scholar
  104. 104.
    Master SS, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B, Timmins GS, Sander P, Deretic V (2008) Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 3:224–232PubMedCrossRefGoogle Scholar
  105. 105.
    Johnston JB, Barrett JW, Nazarian SH, Goodwin M, Ricciuto D, Wang G, McFadden G (2005) A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity 23:587–598PubMedCrossRefGoogle Scholar
  106. 106.
    Stasakova J, Ferko B, Kittel C, Sereinig S, Romanova J, Katinger H, Egorov A (2005) Influenza A mutant viruses with altered NS1 protein function provoke caspase-1 activation in primary human macrophages, resulting in fast apoptosis and release of high levels of interleukins 1beta and 18. J Gen Virol 86:185–195PubMedCrossRefGoogle Scholar
  107. 107.
    Weiss DS, Brotcke A, Henry T, Margolis JJ, Chan K, Monack DM (2007) In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci U S A 104:6037–6042PubMedCrossRefGoogle Scholar
  108. 108.
    van der Velden AW, Velasquez M, Starnbach MN (2003) Salmonella rapidly kill dendritic cells via a caspase-1-dependent mechanism. J Immunol 171:6742–6749PubMedGoogle Scholar
  109. 109.
    Nogueira CV, Lindsten T, Jamieson AM, Case CL, Shin S, Thompson CB, Roy CR (2009) Rapid pathogen-induced apoptosis: a mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLoS Pathog 5: e1000478PubMedCrossRefGoogle Scholar
  110. 110.
    Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342PubMedCrossRefGoogle Scholar
  111. 111.
    Yang H, Ochani M, Li J, Qiang X, Tanovic M, Harris HE, Susarla SM, Ulloa L, Wang H, DiRaimo R et al (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A 101:296–301PubMedCrossRefGoogle Scholar
  112. 112.
    Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29:21–32PubMedCrossRefGoogle Scholar
  113. 113.
    Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, Warren SE, Wewers MD, Aderem A (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11:1136–1142PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2011

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyMcGill UniversityMontrealCanada
  2. 2.Department of MedicineMcGill UniversityMontrealCanada
  3. 3.MontrealCanada

Personalised recommendations