Projection Based Model Reduction for Optimal Design of the Time-dependent Stokes System

  • Thomas FrankeEmail author
  • Ronald H. W. Hoppe
  • Christopher Linsenmann
  • Achim Wixforth
Part of the International Series of Numerical Mathematics book series (ISNM, volume 160)


The optimal design of structures and systems described by partial differential equations (PDEs) often gives rise to large-scale optimization problems, in particular if the underlying system of PDEs represents a multi-scale, multi-physics problem. Therefore, reduced order modeling techniques such as balanced truncation model reduction, proper orthogonal decomposition, or reduced basis methods are used to significantly decrease the computational complexity while maintaining the desired accuracy of the approximation. In particular, we are interested in such shape optimization problems where the design issue is restricted to a relatively small portion of the computational domain. In this case, it appears to be natural to rely on a full order model only in that specific part of the domain and to use a reduced order model elsewhere. A convenient methodology to realize this idea consists in a suitable combination of domain decomposition techniques and balanced truncation model reduction. We will consider such an approach for shape optimization problems associated with the time-dependent Stokes system and derive explicit error bounds for the modeling error. As an application in life sciences, we will be concerned with the optimal design of capillary barriers as part of a network of microchannels and reservoirs on microfluidic biochips that are used in clinical diagnostics, pharmacology, and forensics for high-throughput screening and hybridization in genomics and protein profiling in proteomics.


Projection based model reduction shape optimization time-dependent Stokes system domain decomposition balanced truncation biochips 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Antil, A. Gantner, R.H.W. Hoppe, D. Köster, K.G. Siebert, and A. Wixforth, Modeling and simulation of piezoelectrically agitated acoustic streaming on microfluidic biochips, in Domain Decomposition Methods in Science and Engineering XVII,U. Langer et al., eds., Lecture Notes in Computational Science and Engineering, Vol. 60, Springer, Berlin-Heidelberg-New York, 2008, pp. 305–312.Google Scholar
  2. 2.
    H. Antil, R. Glowinski, R.H.W. Hoppe, C. Linsenmann, T.W. Pan, and A. Wixforth, Modeling, simulation, and optimization of surface acoustic wave driven microfluidic biochips. J. Comp. Math. 28, 149–169, 2010.zbMATHMathSciNetGoogle Scholar
  3. 3.
    H. Antil, M. Heinkenschloss, R.H.W. Hoppe, and D.C. Sorensen, Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables. Comp. Visual. Sci. 13, 249–264, 2010.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    H. Antil, M. Heinkenschloss, and R.H.W. Hoppe, Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system. Optimization Methods & Software, DOI:10.1080/10556781003767904, 2010.Google Scholar
  5. 5.
    H. Antil, R.H.W. Hoppe, and C. Linsenmann, Path-following primal-dual interiorpoint methods for shape optimization of stationary flow problems. J. Numer. Math. 11, 81–100, 2007.CrossRefMathSciNetGoogle Scholar
  6. 6.
    H. Antil, R.H.W. Hoppe, and C. Linsenmann, Adaptive path following primal dual interior point methods for shape optimization of linear and nonlinear Stokes flow problems. In: Lecture Notes in Computer Science, Vol. 4818, pp. 259–266, Springer, Berlin-Heidelberg-New York, 2008.Google Scholar
  7. 7.
    H. Antil, R.H.W. Hoppe, and C. Linsenmann, Optimal design of stationary flow problems by path-following interior-point methods. Control and Cybernetics 37, 771–796, 2008.zbMATHMathSciNetGoogle Scholar
  8. 8.
    A.C. Antoulas, Approximation of Large-Scale Systems. SIAM, Philadelphia, 2005.CrossRefzbMATHGoogle Scholar
  9. 9.
    A.C. Antoulas, M. Heinkenschloss, and T. Reis, On balanced truncation for inhomogeneously initialized systems. Technical Report TR09-29, Department of Computational and Applied Mathematics, Rice University, 2009.Google Scholar
  10. 10.
    Z. Bai, P. Dewilde, and R. Freund, Reduced order modeling. Handbook of Numerical Analysis, Vol. XIII (W. Schilders and E.J.W. ter Maten; eds.), pp. 825–895, North-Holland/Elsevier, Amsterdam, 2005.Google Scholar
  11. 11.
    P. Benner, R.W. Freund, D. Sorensen, and A. Varga (eds.), Special issue on ‘order reduction of large-scale systems’. Linear Algebra and its Applications 415 (2-3), 2006.Google Scholar
  12. 12.
    P. Benner, J.-R. Li, and T. Penzl, Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems. Numer. Lin. Alg. Appl. 15, 755–777, 2008.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    P. Benner, V. Mehrmann, and D.C. Sorensen (eds.), Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, Vol. 45, Springer, Berlin-Heidelberg-New York, 2005.Google Scholar
  14. 14.
    D. Braess, Finite elements. Theory, Fast Solvers, and Applications in Elasticity Theory. 3rd Ed. Cambridge University Press, Cambridge, 2007.CrossRefzbMATHGoogle Scholar
  15. 15.
    F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer, Berlin-Heidelberg-New York, 1991.CrossRefzbMATHGoogle Scholar
  16. 16.
    T. Bui-Thanh, K. Willcox, and O. Ghattas, Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comp. 30, 3270–3288, 2008.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    T. Bui-Thanh, K. Willcox, O. Ghattas, and B. van Bloemen Wanders, Goal-oriented, model-constrained optimization for reduction of large-scale systems. J. Comp. Phys. 224, 880–896, 2007.CrossRefzbMATHGoogle Scholar
  18. 18.
    M. Fahl and E. Sachs, Reduced order modelling approaches to PDE-constrained optimization based on proper orthogonal decomposition. In: Large-Scale PDE-Constrained Optimization (L.T. Biegler et al.; eds.), Lect. Notes in Comput. Sci. Engrg., Vol. 30, Springer, Berlin-Heidelberg-New York, 2003.Google Scholar
  19. 19.
    M.A. Fallah, SAW induced acoustic streaming in microchannels of different geometry. Master’s Thesis. Institute of Physics, University of Augsburg, 2008.Google Scholar
  20. 20.
    T. Franke and A. Wixforth, Microfluidics for miniaturized laboratories on a chip. ChemPhysChem 9, 2140–2156, 2008.CrossRefGoogle Scholar
  21. 21.
    R.W. Freund, Model reduction methods based on Krylov subspaces. Acta Numerica, 267–319, 2003.Google Scholar
  22. 22.
    V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer, Berlin-Heidelberg-New York, 1986.CrossRefzbMATHGoogle Scholar
  23. 23.
    A. Gantner, R.H.W. Hoppe, D. Köster, K.G. Siebert, and A. Wixforth, Numerical simulation of piezoelectrically agitated surface acoustic waves on microfluidic biochips, Comp. Visual. Sci. 10, 145–161, 2007.CrossRefGoogle Scholar
  24. 24.
    M.A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN, 39, 157–181, 2005.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    M.A. Grepl, Y. Maday, N.C. Nguyen, and A.T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: M2AN, 41, 575–605, 2007.CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    A. Griewank and A. Walther, Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation. 2nd Ed. SIAM, Philadelphia, 2008.zbMATHGoogle Scholar
  27. 27.
    S. Gugercin, D.C. Sorensen, and A.C. Antoulas, A modified low-rank Smith method for large scale Lyapunov equations. Numer. Algorithms 32, 27–55, 2003.CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Z. Guttenberg, H. Muller, H. Habermuller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5, 308–317, 2005.CrossRefGoogle Scholar
  29. 29.
    B. Haasdonk, M. Ohlberger, and G. Rozza, A reduced basis method for evolution schemes with parameter-dependent explicit operators. Electronic Transactions on Numerical Analysis 32, 145–161, 2008.zbMATHMathSciNetGoogle Scholar
  30. 30.
    M. Heinkenschloss, D.C. Sorensen, and K. Sun, Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations. SIAM Journal on Scientific Computing, 30, 1038–1063, 2008.CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    M. Hinze and S. Volkwein, Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: Error estimates and suboptimal control. In: Dimension Reduction of Large-Scale Systems (P. Benner, V. Mehrmann, and D.S. Sorensen; eds.), pages 261–306, Lecture Notes in Computational Science and Engineering, Vol. 45, Springer, Berlin-Heidelberg-New York, 2005.CrossRefGoogle Scholar
  32. 32.
    M. Hinze and S. Volkwein, Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comp. Optim. Appl. 39, 319–345, 2008.CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    K. Ito and S.S. Ravindran, A reduced order method for simulation and control of fluid flows. J. Comp. Phys. 143, 403–425, 1998.CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    C.T. Kelley, lterative Methods for Optimization. SIAM, Philadelphia, 1999.CrossRefGoogle Scholar
  35. 35.
    D. Köster, Numerical simulation of acoustic streaming on SAW-driven biochips, SIAM J. Comp. Sci. 29, 2352–2380, 2007.CrossRefzbMATHGoogle Scholar
  36. 36.
    K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90, 117–148, 2001.CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40, 492–515, 2002.CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    K. Kunisch and S. Volkwein, Proper orthogonal decomposition for optimality systems. ESAIM: M2AN, 42, 1–23, 2008.CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    J.-R. Li and J. White, Low ranksol ution of Lyapunov equations . SIAM J. Matrix Anal. Appl. 24, 260–280, 2002.CrossRefMathSciNetGoogle Scholar
  40. 40.
    J.L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I, II. Springer, Berlin-Heidelberg-New York, 1972.Google Scholar
  41. 41.
    H.V. Ly and H.T. Tran, Modelling and control of physical processes using proper orthogonal decomposition. Math. and Comput. Modelling 33, 223–236, 2001.CrossRefzbMATHGoogle Scholar
  42. 42.
    H.V. Ly and H.T. Tran, Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor. Quart. Appl. Math. 60, 631–656, 2002.zbMATHMathSciNetGoogle Scholar
  43. 43.
    R. März, Canonical projectors for linear differential algebraic equations. Comput. Math. Appl. 31, 121–135, 1996.CrossRefzbMATHGoogle Scholar
  44. 44.
    V. Mehrmann and T. Stykel, Balanced truncation model reduction for large-scale systems in descriptor form. In: Dimension Reduction of Large-Scale Systems (P. Benner, V. Mehrmann, and D.C. Sorensen; eds.), Lecture Notes in Computational Science and Engineering, Vol. 45, pp. 83–115, Springer, Berlin-Heidelberg-New York, 2005.Google Scholar
  45. 45.
    A.T. Patera and G. Rozza, Reduced Basis Methods and A Posteriori Error Estimation for Parametrized Partial Differential Equations. (c) M.I.T. 2006-08. MIT Pappalardo Graduate Monographs in Mechanical Engineering, MIT, Boston, in progress.Google Scholar
  46. 46.
    T. Penzl, Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Syst. Control Lett. 40, 139–144, 2000.CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    J. Pollard and B. Castrodale, Outlookf or DNA microarrays: emerging applications and insights on optimizing microarray studies, Report. Cambridge Health Institute, Cambridge 2003.Google Scholar
  48. 48.
    T. Reis and M. Heinkenschloss, Model reduction for a class of nonlinear electrical circuits. In: Proc. 48th IEEE Conference on Decision and Control, Shanghai, P.R. China, December 16–18, 2009, pp. 5376–5383, IEEE, 2010.Google Scholar
  49. 49.
    C.W. Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. on Bifurcation and Chaos 15, 997–1013, 2005.CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    C.W. Rowley, T. Colonius, and R.M. Murray, Model reduction for compressible fluids using POD and Galerkin projection. Phys. D 189, 115–129, 2004.CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    S.M. Rump, INTLAB – INTerval LABoratory. In: Tibor Csendes, editor, Developments in Reliable Computing, pages 77–104. Kluwer Academic Publishers, Dordrecht, 1999.Google Scholar
  52. 52.
    W.H.A. Schilders, H.A. van der Vorst, and J. Rommes (eds.), Model Order Reduction: Theory, Research Aspects, and Applications. Mathematics in Industry, Vol. 13, Springer, Berlin-Heidelberg-New York, 2008.Google Scholar
  53. 53.
    H.M. Shapiro, Practical flow cytometry. Wiley-Liss, New York, 2003.CrossRefGoogle Scholar
  54. 54.
    T. Stykel, Balanced truncation model reduction for semidiscretized Stokes equation. Linear Algebra Appl. 415, 262–289, 2006.CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    F. Tröltzsch and S. Volkwein, POD a posteriori error estimates for linear-quadratic optimal control problems. Comp. Opt. and Appl. 44, 83–115, 2009.CrossRefzbMATHGoogle Scholar
  56. 56.
    S. Volkwein, Optimal control of a phase-field model using proper orthogonal decomposition. ZAMM 81, 83–97, 2001.CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition. AIAA 40, 2323–2330, 2002.CrossRefGoogle Scholar
  58. 58.
    A. Wixforth, Acoustically driven programmable microfluidics for biological and chemical applications. JALA 11, 399-405, 2006.Google Scholar
  59. 59.
    A. Wixforth, J. Scriba, and G. Gauer, Flatland fluidics. mst news 5, 42-43, 2002.Google Scholar
  60. 60.
    L.Y. Yeo and J.R. Friend, Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 3, 012002–012023, 2009.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Thomas Franke
    • 1
    Email author
  • Ronald H. W. Hoppe
    • 2
    • 3
  • Christopher Linsenmann
    • 4
  • Achim Wixforth
    • 1
  1. 1.Institute of PhysicsUniversität AugsburgAugsburgGermany
  2. 2.Institute of MathematicsUniversität AugsburgAugsburgGermany
  3. 3.Department of MathematicsUniversity of HoustonHoustonUSA
  4. 4.Institute of MathematicsUniversität AugsburgAugsburgGermany

Personalised recommendations