Advertisement

On the Influence of Constitutive Models on Shape Optimization for Artificial Blood Pumps

  • Markus ProbstEmail author
  • Michael Lülfesmann
  • Mike Nicolai
  • H. Martin Bücker
  • Marek Behr
  • Christian H. Bischof
Chapter
Part of the International Series of Numerical Mathematics book series (ISNM, volume 160)

Abstract

We report on a shape optimization framework that couples a highlyparallel finite element solver with a geometric kernel and different optimization algorithms. The entire optimization framework is transformed with automatic differentiation techniques, and the derivative code is employed to compute derivatives of the optimal shapes with respect to viscosity. This methodology provides a powerful tool to investigate the necessity of intricate constitutive models by taking derivatives with respect to model parameters

Keywords

Shape optimization sensitivity analysis automatic differentiation constitutive models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Abraham, M. Behr, and M. Heinkenschloss. Shape optimization in steady blood flow: A numerical study of non-Newtonian effects. Computer Methods in Biomechanics and Biomedical Engineering, 8(2):127–137, 2005.CrossRefGoogle Scholar
  2. 2.
    F. Abraham, M. Behr, and M. Heinkenschloss. Shape optimization in unsteady blood flow: A numerical study of non-Newtonian effects. Computer Methods in Biomechanics and Biomedical Engineering, 8(3):201–212, 2005.CrossRefGoogle Scholar
  3. 3.
    D. Arora, M. Behr, and M. Pasquali. A tensor-based measure for estimating blood damage. Artificial Organs, 28:1002–1015, 2004.CrossRefGoogle Scholar
  4. 4.
    M. Behr and T.E. Tezduyar. Finite element solution strategies for large-scale flow simulations. Computer Methods in Applied Mechanics and Engineering, 112:3–24, 1994.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    C.H. Bischof, A. Carle, P. Khademi, and A. Mauer. ADIFOR2.0: Automatic differentiation of Fortran 77 programs. IEEE Computational Science & Engineering, 3(3):18–32, 1996.CrossRefGoogle Scholar
  6. 6.
    S. Chien, R. King, R. Skalak, S. Usami, and A. Copley. Viscoelastic properties of human blood and red cell suspensions. Biorheology, 12(6):341–346, 1975.Google Scholar
  7. 7.
    A.V. Fiacco. Introduction to Sensitivity and Stability Analysis. Number 165 in Mathematics in Science and Engineering. Academic Press, New York, 1983.Google Scholar
  8. 8.
    A. Garon and M.-I. Farinas. Fast 3D numerical hemolysis approximation. Artificial Organs, 28(11):1016–1025, 2004.CrossRefGoogle Scholar
  9. 9.
    F. Gijsen, F. van de Vosse, and J. Janssen. The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model. Journal of Biomechanics, 32:601–608, 1999.CrossRefGoogle Scholar
  10. 10.
    L. Goubergrits and K. Affeld. Numerical estimation of blood damage in artificial organs. Artificial Organs, 28(5):499–507, 2004.CrossRefGoogle Scholar
  11. 11.
    R. Griesse and A. Walther. Parametric sensitivities for optimal control problems using automatic differentiation. Optimal Control Applications and Methods, 24(6):297–314, 2003.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Number 105 in Other Titles in Applied Mathematics. SIAM, Philadelphia, PA, 2nd edition, 2008.Google Scholar
  13. 13.
    L. Gu and W. Smith. Evaluation of computational models for hemolysis estimation. ASAIO Journal, 51:202–207, 2005.CrossRefGoogle Scholar
  14. 14.
    L. Hascoët and V. Pascual. Tapenade 2.1 user’s guide. Technical Report 0300, INRIA, 2004.Google Scholar
  15. 15.
    J. Haslinger and R. Mäkinen. Introduction to Shape Optimization: Theory, Approximation, and Computation. Advances in Design and Control. SIAM, Philadelphia, PA, 2003.Google Scholar
  16. 16.
    B. Hentschel, I. Tedjo, M. Probst, M. Wolter, M. Behr, C. Bischof, and T. Kuhlen. Interactive Blood Damage Analysis for Ventricular Assist Devices. IEEE Transactions on Visualization and Computer Graphics, 14:1515–1522, 2008.CrossRefGoogle Scholar
  17. 17.
    B. Johnston, P. Johnston, S. Corney, and D. Kilpatrick. Non-Newtonian blood flow in human right coronary arteries: Steady state simulations. Journal of Biomechanics, 37:709–720, 2004.CrossRefGoogle Scholar
  18. 18.
    M. Lukáčová-Medvid’ová and A. Zaušková. Numerical modelling of shear-thinning non-Newtonian flows in compliant vessels. International Journal for Numerical Methods in Fluids, 56(8):1409–1415, 2008.CrossRefMathSciNetGoogle Scholar
  19. 19.
    L. Piegl and W. Tiller. The NURBS Book. Monographs in visual communication. Springer-Verlag, 2nd edition, 1997.Google Scholar
  20. 20.
    M. Probst, M. Lülfesmann, H.M. Bücker, M. Behr, and C.H. Bischof. Sensitivity analysis for artificial grafts using automatic differentiation. International Journal for Numerical Methods in Fluids, 62(9):1047–1062, 2010.zbMATHGoogle Scholar
  21. 21.
    M. Probst, M. Lülfesmann, M. Nicolai, H.M. Bücker, M. Behr, and C.H. Bischof. Sensitivity of optimal shapes of artificial grafts with respect to flow parameters. Computer Methods in Applied Mechanics and Engineering, 199:997–1005, 2010.CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    L.B. Rall. Automatic Differentiation: Techniques and Applications, volume 120 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1981.Google Scholar
  23. 23.
    P. Spellucci. A new technique for inconsistent QP problems in the SQP method. Mathematical Methods of Operations Research, 47:355–400, 1998.CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    P. Spellucci. An SQP method for general nonlinear programs using only equality constrained subproblems. Mathematical Programming, 82:413–448, 1998.zbMATHMathSciNetGoogle Scholar
  25. 25.
    G. Thurston. Viscoelasticity of human blood. Biophysical Journal, 12:1205–1217, 1972.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Markus Probst
    • 1
    Email author
  • Michael Lülfesmann
    • 2
  • Mike Nicolai
    • 1
  • H. Martin Bücker
    • 2
  • Marek Behr
    • 1
  • Christian H. Bischof
    • 2
  1. 1.Chair for Computational Analysis of Technical Systems (CATS) Center for Computational Engineering Science (CCES)RWTH Aachen UniversityAachenGermany
  2. 2.Institute for Scientific Computing (SC) Center for Computational Engineering Science (CCES)RWTH Aachen UniversityAachenGermany

Personalised recommendations