Optimization of Simulated Moving Bed Processes

  • Achim KüpperEmail author
  • Sebastian Engell
Part of the International Series of Numerical Mathematics book series (ISNM, volume 160)


In this contribution, the optimization of periodic chromatographic simulated moving bed SMB processes is discussed. The rigorous optimization is based on a nonlinear pde model which incorporates rigorous models of the chromatographic columns and the discrete shifts of the inlet and outlet ports. The potential of the optimization is demonstrated for a separation problem with nonlinear isotherm of the Langmuir type for an SMB process and the ModiCon process. Here, an efficient numerical approach based on multiple shooting is employed. An overview of established optimization approaches for SMB processes is given.


Simulated Moving Bed ModiCon multiple shooting non-linear optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, P., Nicoud, R., Bailly, M., Ludemann-Hombourger, O., 2002. Process and device for separation with variable-length chromatographic columns. US Patent 6.413.419.Google Scholar
  2. Amanullah, M., Grossmann, C., Erdem, G., Mazzotti, M., Morbidelli, M., Morari, M., 2008. Cycle to cycle optimizing control of simulated moving beds. AIChE Journal 54 (1), 194–208.CrossRefGoogle Scholar
  3. Broughton, D., Gerhold, C., 1961. Continuous sorption process employing a fixed bed of sorbent and moving inlets and outlets. US Patent 2.985.589.Google Scholar
  4. Chung, S., Wen, C., 1968. Longitudinal diffusion of liquid flowing through fixed and fluidized beds. AIChE Journal 14, 857–866.CrossRefGoogle Scholar
  5. Dünnebier, G., 2000. Effektive Simulation und mathematische Optimierung chromatographischer Trennprozesse, Dr.-Ing. Dissertation. Fachbereich Bio- und Chemieingenieurwesen, Universität Dortmund. Shaker-Verlag, Aachen.Google Scholar
  6. Dünnebier, G., Klatt, K.-U., 2000. Modelling and simulation of nonlinear chromatographic separation processes: A comparison of different modelling aspects. Chemical Engineering Science 55 (2), 373–380.CrossRefGoogle Scholar
  7. Grossmann, C., Langel, C., Mazzotti, M., Morari, M., Morbidelli, M., 2009. Experimental implementation of automatic cycle to cycle control to a nonlinear chiral simulated moving bed separation. J. Chromatogr., A 1217 (13), 2013–2021.CrossRefGoogle Scholar
  8. Gu, T., 1995. Mathematical Modelling and Scale-up of Liquid Chromatography. Springer Verlag, New York.CrossRefGoogle Scholar
  9. Hanisch, F., 2002. Prozessführung präparativer Chromatographieverfahren, Dr.-Ing. Dissertation. Fachbereich Bio- und Chemieingenieurwesen, Universität Dortmund. Shaker-Verlag, Aachen.Google Scholar
  10. Hashimoto, K., Adachi, S., Noujima, H., Marujama, H., 1983. Models for the separation of glucose/fructose mixture using a simulated moving bed adsorber. Journal of chemical engineering of Japan 16 (15), 400–406.CrossRefGoogle Scholar
  11. Hindmarsh, A., 1983. ODEPACK, a systematized collection of ode solvers. In: Stepleman, R. (Ed.), Scientific Computing. North-Holland, Amsterdam, pp. 55–64.Google Scholar
  12. Jupke, A., 2004. Experimentelle Modellvalidierung und modellbasierte Auslegung von Simulated Moving Bed (SMB) Chromatographieverfahren. Dr.-Ing. Dissertation, Fachbereich Bio- und Chemieingenieurwesen, Universität Dortmund. VDI Reihe 3, Nr. 807.Google Scholar
  13. Juza, M., Mazzotti, M., Morbidelli, M., 2000. Simulated moving-bed chromatography and its application to chirotechnology. Trends in Biotechnology 18 (3), 108–118.CrossRefGoogle Scholar
  14. Kawajiri, Y., Biegler, L. T., 2006a. Large scale nonlinear optimization for asymmetric operation and design of simulated moving beds. Journal of Chromatography A 1133 (1-2), 226–240.CrossRefGoogle Scholar
  15. Kawajiri, Y., Biegler, L. T., 2006b. Optimization strategies for simulated moving bed and powerfeed processes. AIChE Journal 52 (4), 1343–1350.CrossRefGoogle Scholar
  16. Kearney, M., Hieb, K., 1992. Time variable simulated moving bed process. US Patent 5.102.553.Google Scholar
  17. Klatt, K.-U., Hanisch, F., Dünnebier, G., 2002. Model-based control of a simulated moving bed chromatographic process for the separation of fructose and glucose. Journal of Process Control 12 (2), 203–219.CrossRefGoogle Scholar
  18. Klatt, K.-U., Hanisch, F., Dünnebier, G., Engell, S., 2000. Model-based optimization and control of chromatographic processes. Computers and Chemical Engineering 24, 1119–1126.CrossRefGoogle Scholar
  19. Kloppenburg, E., Gilles, E., 1999. A new concept for operating simulated-moving-bed processes. Chemical Engineering and Technology 22 (10), 813–817.CrossRefGoogle Scholar
  20. Küpper, A., Engell, S., 2007. Non-linear model predictive control of the Hashimoto simulated moving bed process. In: R. Findeisen, L. B., Allgöwer, F. (Eds.), Assessment and Future Directions of Nonlinear Model Predictive Control. Springer-Verlag, Berlin, pp. 473–483.CrossRefGoogle Scholar
  21. Küpper, A., Engell, S., 2009. Optimierungsbasierte Regelung des Hashimoto-SMBProzesses. at-Automatisierungstechnik 57 (7), 360–370.Google Scholar
  22. Leineweber, D., 1999. Efficient reduced SQP methods for the optimization of chemical processes described by large sparse DAE models. Vol. 613 of Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik. VDI Verlag, Düsseldorf.Google Scholar
  23. Ludemann-Hombourger, O., Nicoud, R., Bailly, M., 2000. The Varicol process: a new multicolumn continuous chromatographic process. Separation Science and Technology 35 (16), 1829–1862.CrossRefGoogle Scholar
  24. Mazzotti, M., Storti, G., Morbidelli, M., 1997. Optimal operation of simulated moving bed units for nonlinear chromatographic separations. Journal of Chromatography A 769, 3–24.CrossRefGoogle Scholar
  25. Nicoud, R., 1998. Simulated Moving Bed (SMB): Some possible applications for biotechnology. In: Subramanian, G. (Ed.), Bioseparation and Bioprocessing. Wiley-VCH, Weinheim-New York.Google Scholar
  26. Nocedal, J., Wright, S., 1999. Numerical optimization. Springer-Verlag, New-York.CrossRefzbMATHGoogle Scholar
  27. Potschka, A., Bock, H., Engell, S., Küpper, A., Schlöder, J., 2008. Optimization of periodic adsorption processes: The Newton-Picard inexact SQP method. Deutsche Forschungsgemeinschaft Priorty Program 1253.Google Scholar
  28. Potschka, A., Küpper, A., Schlöder, J., Bock, H., Engell, S., 2010. Optimal control of periodic adsorption processes: The Newton-Picard inexact SQP method. In: Recent Advances in Optimization and its Applications in Engineering (edited volume of 14th Belgian-French-German Conference on Optimization Leuven, 2009. Springer Verlag, in press.Google Scholar
  29. Ruthven, D. M., 1984. Principles of Adsorption and Adsorption processes. Wiley, New York.Google Scholar
  30. Schmidt-Traub, H., 2005. Preparative chromatography of fine chemicals and pharmaceuticals agents. Wiley-Verlag, Berlin.CrossRefGoogle Scholar
  31. Schramm, H., Kaspereit, M., Kienle, A., Seidel-Morgenstein, A., 2003a. Simulated moving bed process with cyclic modulation of the feed concentration. Journal of Chromatography A 1006 (1–2), 77–86.CrossRefGoogle Scholar
  32. Schramm, H., Kienle, A., Kaspereit, M., Seidel-Morgenstein, A.,  2003b. Improved operation of simulated moving bed processes through cyclic modulation of feed flow and feed concentration. Chemical Engineering Science 58 (23–24), 5217–5227.CrossRefGoogle Scholar
  33. Toumi, A., 2005. Optimaler Betrieb und Regelung von Simulated-Moving-Bed-Prozessen, Dr.-Ing. Dissertation. Fachbereich Bio- und Chemieingenieurwesen, Universität Dortmund. Shaker-Verlag, Aachen.Google Scholar
  34. Toumi, A., Engell, S., 2004. Optimization-based control of a reactive simulated moving bed process for glucose isomerization. Chemical Engineering Science 59 (18), 3777–3792.CrossRefGoogle Scholar
  35. Toumi, A., Engell, S., Diehl, M., Bock, H., Schlöder, J., 2007. Efficient optimization of simulated moving bed processes. Chemical Engineering and Processing 46 (11), 1067–1084.CrossRefGoogle Scholar
  36. Toumi, A., Engell, S., Ludemann-Hombourger, O., Nicoud, R. M., Bailly, M., 2003. Optimization of simulated moving bed and Varicol processes. Journal of Chromatography A 1-2, 15–31.CrossRefGoogle Scholar
  37. Toumi, A., Hanisch, F., Engell, S., 2002. Optimal operation of continuous chromatographic processes: Mathematical optimization of the VARICOL process. Ind. Eng. Chem. Res. 41 (17), 4328–4337.CrossRefGoogle Scholar
  38. Wang, C., Klatt, K.-U., Dünnebier, G., Engell, S., Hanisch, F., 2003. Neural networkbased identification of smb chromatographic processes. Control Engineering Practice 11 (8), 949–959.CrossRefGoogle Scholar
  39. Zhang, Z., Mazzotti, M., Morbidelli, M., 2003. PowerFeed operation of simulated moving bed units: changing flow-rates during the switching interval. Journal of Chromatography A 1006 (1-2), 87–99CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Process Dynamics and Operations GroupTechnische Universität DortmundDortmundGermany

Personalised recommendations